Data Mining Competition Practices
Springer Verlag, Singapore
978-981-95-3445-6 (ISBN)
- Titel nicht im Sortiment
- Artikel merken
At the same time, this book can also serve as a reference guide, providing various methods and techniques for the entire process from data input to obtaining final results in different scenarios, including structured data, natural language processing, computer vision, video understanding, and reinforcement learning. These practical methods and techniques can help readers significantly improve their performance on datasets and are applicable not only in data mining competitions but also in research and real-world business applications.
The translation was done with the help of artificial intelligence. A subsequent human revision was done primarily in terms of content.
Kele Xu has received the Ph.D. degree from Université Pierre et Marie CURIE, Paris, France, worked with Prof. Bruce Denby and Prof. Gerard Dreyfus (IEEE Fellow). His current research interests include Multimodal Machine Learning and Software Engineering. He is also interested in the applications of machine learning for audio signal processing, speech processing. During his part-time, he is a competition-driven researcher. He has won many data mining / machine learning competitions during the past years, including ACM KDD Cup, Kaggle, Tianchi and CCF BDCI (CCF Big Data Computing Intelligence Contest). He is also a Kaggle Grandmaster.
Chapter 1: Introduction to Data Mining Competitions.- Chapter 2: Structured Data: Theoretical Part.- Chapter 3: Structured Data: Practical Part.- Chapter 4: Natural Language Processing: Theoretical Part.- Chapter 5: Natural Language Processing: Practical Part.- Chapter 6: Computer Vision (Image): Theoretical Part.- Chapter 7: Computer Vision (Image): Practical Part.- Chapter 8: Computer Vision (Video): Theoretical Part.- Chapter 9: Computer Vision (Video): Practical Part.- Chapter 10: Reinforcement Learning: Theoretical Part.- Chapter 11: Reinforcement Learning: Practical Part.
| Erscheint lt. Verlag | 11.3.2026 |
|---|---|
| Zusatzinfo | 40 Illustrations, color; 65 Illustrations, black and white |
| Verlagsort | Singapore |
| Sprache | englisch |
| Maße | 155 x 235 mm |
| Themenwelt | Informatik ► Datenbanken ► Data Warehouse / Data Mining |
| Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
| Schlagworte | AI Competitions • Data Mining • Deep learning • ensemble learning • Gradient Boosting Trees • Reinforcement Learning |
| ISBN-10 | 981-95-3445-3 / 9819534453 |
| ISBN-13 | 978-981-95-3445-6 / 9789819534456 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
aus dem Bereich