Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Computational Physics Using C - John W. Fattaruso

Computational Physics Using C

Efficient Programming with Ease
Buch | Softcover
2026
John Wiley & Sons Inc (Verlag)
978-1-394-31853-7 (ISBN)
CHF 159,95 inkl. MwSt
  • Noch nicht erschienen (ca. Juni 2026)
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken

1 INTRODUCTION 1.1 What is Computational Physics?

1.2 Modularizing and Reusing Code

1.3 Introduction to Computational Efficiency

1.4 Taylor’s Theorem

2 PRECISION LIMITS OF NUMERICAL COMPUTATION

2.1 Computer Numerical Representation

2.2 Roundoff Errors

2.3 Loss of Precision Errors

2.4 Truncation Errors

3 C PROGRAMMING DETAILS

3.1 Structures and Pointers

3.1.1 Pointers

3.1.2 Custom Data Types

3.1.3 Dynamic Memory Allocation

3.1.4 Structures for Tables, Vectors, and Matrices

3.2 Modularizing Code and Encapsulating Data in C

3.3 Common Coding Traps

3.3.1 Type Conversions

3.3.2 Mixed-Type Expressions

3.3.3 Floating Point Comparisons

3.3.4 Floating Point Loop Indexing

3.3.5 The Fence Post Problem 3.3.6 Library Function Domains

4 VISUALIZATION OF NUMERICAL MODELS

4.1 Function Stepper Tool

4.2 Damped Harmonic Oscillator

4.3 The gnuplot Plotting Tool

4.4 The Helmholtz Coil

4.5 Rainbows

4.6 Diffraction Patterns

4.7 Collisions

4.8 Quantum Wave Packets

4.9 Field Vectors

4.10 Exercises

5 ROOTS OF NONLINEAR FUNCTIONS

5.1 Root Finding Algorithms

5.1.1 The Newton-Raphson Method

5.1.2 Secant Method

5.1.3 Regula Falsi Method

5.1.4 Bisection Method

5.2 The Root Solver Tool

5.3 Kepler’s Equation

5.4 The Catenary

5.5 Kirchoff’s Voltage Law

5.6 Gravitational Lagrange Points

5.7 Finding Multiple Roots with Stepping

5.8 Quantum Energy Levels of Bound Particles

5.9 Exercises

6 SYSTEMS OF LINEAR EQUATIONS

6.1 Gaussian Elimination

6.2 Pivoting

6.3 The Systems of Linear Equations Tool

6.4 Modes of Coupled Oscillators

6.5 Kirchoff’s Current Law

6.6 Determinate Structures

6.7 Indeterminate Structures

6.8 Exercises

7 SYSTEMS OF NONLINEAR EQUATIONS

7.1 Newton-Raphson Algorithm

7.2 The Systems of Nonlinear Equations Tool

7.3 Mechanics Problems

7.4 Statics Problems

7.5 Nonlinear Circuits

7.6 Numerical Estimates of the Jacobian Partial Derivatives

7.7 The Covalent Bond

7.8 Exercises

8 MONTE CARLO SIMULATION

8.1 Applications of Pseudorandom Numbers

8.2 Linear Congruential Method

8.3 The Pseudorandom Number Generator Tool

8.4 Random Walks

8.5 Radioactive Decay

8.6 Classical Scattering

8.7 Olbers’ Paradox

8.8 Ideal Gas Simulation

8.9 Integration of Gauss’ Law

8.10 Exercises

9 INTERPOLATION OF SPARSE DATA POINTS

9.1 Interpolation Algorithms

9.1.1 Newton Polynomial

9.1.2 Lagrange Polynomial

9.2 The Interpolation Tool

9.3 Interpolation of Sparse Experimental Data

9.4 Interpolation of Sparse Astronomical Data

9.5 Interpolation of Expensive Simulated Data

9.6 Inverse Interpolation

9.7 Interpolation of Troublesome Numerical Data

10 NUMERICAL INTEGRATION

10.1 Integration Algorithms

10.1.1 Trapezoidal Rule

10.1.2 Simpson’s Rule

10.2 The Integration Tool

10.3 Orbital Circumference

10.4 The Helmholtz Coil Revisited

10.5 Practical Solenoids

11 FUNCTION MINIMIZATION

11.1 Single Variable Functions

11.2 Multiple Variable Functions

11.3 Optimizing the Helmholtz Coil

11.4 Nonlinear Fitting

11.5 Exercises

12 EXPLICIT METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

12.1 Vector Fields

12.2 Explicit Algorithms for Differential Equation

12.2.1 Euler’s Method

12.2.2 Heun’s Method

12.2.3 Modified Euler Method

12.2.4 Runge-Kutta Methods

12.2.5 Adams-Bashforth-Moulton Method

12.3 Solving Higher Order Equations and Systems of Differential Equations

12.4 The Differential Equation Solver Tool

12.5 Large-Angle Pendulum

12.6 Ballistics

12.7 Forced and Damped Pendulum

12.8 Inverted Pendulum

12.9 Synchronized Oscillators

12.10 Double Pendulum

12.11 Chaotic Dynamics

12.12 n-Body Collisions

12.13 Classical Field Lines

12.14 Playground Swing

12.15 Deflecting Charges in Magnetic Fields

12.16 Solid State Physics

12.17 Quantum Scattering

12.18 Exercises

13 IMPLICIT METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

13.1 Explicit Algorithm Instability

13.1.1 Backward Euler Method

13.1.2 Trapezoidal Method

13.2 The Implicit Differential Equation Solver Tool

13.3 Waves

13.4 n-Body Gravitational Systems

13.5 Magnetic Confinement

13.6 The Ionosphere

13.7 Exercises Bibliography Index

Erscheint lt. Verlag 8.6.2026
Verlagsort New York
Sprache englisch
Themenwelt Informatik Theorie / Studium Algorithmen
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Naturwissenschaften Physik / Astronomie
ISBN-10 1-394-31853-7 / 1394318537
ISBN-13 978-1-394-31853-7 / 9781394318537
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
IT zum Anfassen für alle von 9 bis 99 – vom Navi bis Social Media

von Jens Gallenbacher

Buch | Softcover (2021)
Springer (Verlag)
CHF 46,15