Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Für diesen Artikel ist leider kein Bild verfügbar.

Deep-Learning-Assisted Statistical Methods with Examples in R

(Autor)

Buch | Softcover
186 Seiten
2026
CRC Press (Verlag)
978-1-041-15843-1 (ISBN)
CHF 87,25 inkl. MwSt
  • Noch nicht erschienen (ca. März 2026)
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
This book explores how deep learning enhances statistical methods for hypothesis testing, point estimation, optimization, interpretation, and other aspects. This book is a valuable resource for students, practitioners, and researchers integrating statistics and data science techniques to solve impactful real-world problems.
This book explores how deep learning enhances statistical methods for hypothesis testing, point estimation, optimization, interpretation, and other aspects. It uniquely demonstrates leveraging deep learning to improve traditional statistical approaches, showcasing their superior performance in practical applications. Each topic includes essential background, clear method explanations, and detailed R code demonstrations through case studies. This allows readers to directly apply these methods to their own challenges and easily adapt the underlying principles to related problems.

This book delves into statistical inference, introducing advanced strategies for hypothesis testing and point estimation. These innovative methods ingeniously combine both artificial and human intelligence, offering robust solutions for scenarios where traditional optimal analytical solutions are elusive or non-existent. A prime example of their real-world impact is in adaptive clinical trials, where these computational approaches can be readily implemented to optimize trial design and outcomes. The author further explores the multifaceted benefits of deep-learning-assisted statistical methods, extending beyond mere statistical efficiency. It highlights crucial features such as integrity protection, ensuring the trustworthiness of results; computational efficiency, enabling faster and more scalable analyses; and interpretability, which is increasingly vital for transparent communication of complex findings in modern statistics. This section encourages readers to consider a broader spectrum of improvements for new statistical methods, focusing on attributes that enhance their practical utility and societal relevance. Finally, the reader is given a critical examination of the limitations and potential concerns associated with the methods presented in earlier chapters. Crucially, it doesn't just identify these issues but also offers constructive mitigation approaches. This equips readers with essential techniques to safeguard AI-based methodologies with their scientific expertise, ensuring responsible and valid application of these powerful computational tools in diverse scientific and practical domains.

This book is a valuable resource for students, practitioners, and researchers integrating statistics and data science techniques to solve impactful real-world problems.

Tianyu Zhan is a Director at AbbVie Inc. He obtained his Ph.D. in Biostatistics from the University of Michigan Ann Arbor in 2017. His research interests are closely related to late-phase clinical trials. He has been actively promoting innovative clinical trial designs and advanced analysis methods at AbbVie, resulting in significant business impacts.

I Introduction and Preparations

1. Introduction to Deep Neural Networks (DNNs)

2. How to Implement DNN in Regression

II Statistical Inference

3. Two-sample Parametric Hypothesis Testing

4. Point Estimation

III Numerical Methods

5. Optimization with Unavailable Gradient Information

6. Protect Integrity and Save Computational Time

7. Interpretable Models in Regression Analysis

IV Extensions

8. Substitutions of Other Methods for DNN

9. Limitations and Mitigations

10. Some Future Works

Erscheint lt. Verlag 17.3.2026
Reihe/Serie Chapman & Hall/CRC Data Science Series
Zusatzinfo 31 Tables, black and white; 5 Line drawings, black and white; 5 Illustrations, black and white
Verlagsort London
Sprache englisch
Maße 156 x 234 mm
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik Computerprogramme / Computeralgebra
Mathematik / Informatik Mathematik Statistik
ISBN-10 1-041-15843-2 / 1041158432
ISBN-13 978-1-041-15843-1 / 9781041158431
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Eine kurze Geschichte der Informationsnetzwerke von der Steinzeit bis …

von Yuval Noah Harari

Buch | Hardcover (2024)
Penguin (Verlag)
CHF 39,95
die materielle Wahrheit hinter den neuen Datenimperien

von Kate Crawford

Buch | Hardcover (2024)
C.H.Beck (Verlag)
CHF 44,75