Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Sacred for Reproducible Python Experiments -  William Smith

Sacred for Reproducible Python Experiments (eBook)

The Complete Guide for Developers and Engineers
eBook Download: EPUB
2025 | 1. Auflage
250 Seiten
HiTeX Press (Verlag)
978-0-00-103022-0 (ISBN)
Systemvoraussetzungen
8,54 inkl. MwSt
(CHF 8,30)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

'Sacred for Reproducible Python Experiments'
Reproducibility lies at the heart of trustworthy computational science, yet ensuring reliable and repeatable results in Python projects remains a complex challenge. 'Sacred for Reproducible Python Experiments' delivers a comprehensive exploration of reproducibility, delving into the scientific, ethical, and practical dimensions that underpin credible research. The opening chapters examine common sources of irreproducibility-such as environmental variation and data inconsistencies-while surveying best practices, regulatory frameworks, and the landscape of experiment tracking solutions.
At the core of the book is Sacred-an advanced Python tool designed to systematize experiment configuration, execution, and monitoring. Readers gain a deep understanding of Sacred's core abstractions and execution model, learning how to structure modular experimental pipelines with ingredients, manage intricate parameter spaces, and seamlessly integrate Sacred into a range of workflows from scripting to notebooks. Rich technical detail is paired with hands-on strategies for tracking experiment states, artifact management, security hardening, and scalable storage-equipping practitioners to manage the full lifecycle of complex, high-throughput research.
Through extensive case studies and advanced applications, this book guides data scientists and machine learning engineers in deploying Sacred for reproducible deep learning pipelines, cloud-native experimentation, and collaborative research. It rigorously addresses compliance, data integrity, and auditability, while also charting a forward-looking perspective on emerging trends in experiment orchestration, automation, and ethical stewardship. Whether navigating regulatory demands or scaling scientific workflows, 'Sacred for Reproducible Python Experiments' is an indispensable resource for reproducible research in Python.

Chapter 1
The Importance of Reproducibility in Computational Experiments


Reproducibility is the bedrock upon which credible scientific discovery stands, yet it is all too often overlooked in computational research. This chapter reveals the profound impact that rigorously repeatable experiments have on scientific progress, trust, and innovation. Journey beyond best practices to confront the root causes of irreproducibility, assess the strengths and weaknesses of existing solutions, and debate the critical ethical and regulatory imperatives that shape the field’s future.

1.1 Scientific Foundations of Reproducibility


Reproducibility constitutes an indispensable pillar of the scientific method, underpinning both the epistemological integrity and practical advancement of scientific knowledge. At its core, reproducibility affirms that experimental and computational results are not isolated artifacts but instead reliably reflect underlying phenomena or theoretical constructs. This assurance emerges from the capacity of independent researchers to replicate findings using the original data, methodology, and computational protocols, thereby verifying the validity and robustness of results.

Philosophically, the imperative for reproducibility traces to the principle of falsifiability, as articulated by Karl Popper. Scientific claims must be testable and subject to potential refutation through repeated empirical or computational scrutiny. Reproducibility operationalizes this principle by requiring that experiments or simulations be transparent and sufficiently documented such that examination and repetition are possible. Without reproducibility, scientific assertions risk devolving into mere assertions or unverifiable anecdotes, compromising the cumulative nature of knowledge building.

Practically, reproducibility strengthens the peer review process, an essential mechanism of quality control in scientific communication. Peer reviewers assess the rigor, soundness, and novelty of research based on the completeness of the reported methodology and the plausibility of the results. When reproducibility is embedded as a standard, it enables reviewers not only to evaluate the logical coherence of presented arguments but also to reproduce key computational steps if necessary. This process exposes errors, uncovers inconsistencies, and reduces the propagation of flawed findings into the scientific corpus.

A critical dimension of reproducibility is independent verification. Ideally, distinct research groups should replicate experiments or computational analyses under varied conditions, potentially employing alternative tools or algorithms, yet arriving at concordant conclusions. Independent verification mitigates biases introduced by specific computational environments, data preprocessing pipelines, or implementation details. For instance, a computational model’s dependence on particular software versions or obscure parameter tuning can be elucidated and challenged through independent reproduction efforts. This rigorous cross-checking fosters confidence in the soundness of scientific claims, discouraging premature acceptance of spurious or irreproducible results.

Reproducibility also functions as the foundation of cumulative progress in computational research. Scientific inquiry is inherently incremental, with each study building on prior results to refine hypotheses, improve methodologies, and extend theoretical frameworks. Transparent and reproducible computational workflows enable subsequent researchers to dissect previous analyses, identify limitations, and extend findings with novel data or enhanced methods. This scaffolded approach accelerates innovation by preventing redundant efforts and promoting methodological reuse. Consequently, reproducibility enhances efficiency and resource utilization within research communities.

In computational research, complexity and opacity are formidable challenges to reproducibility. Research codes often comprise thousands of lines, integrate multiple software dependencies, and require elaborate configuration of computational environments. Minor deviations in software versions, compiler optimizations, or even hardware architecture can induce divergent numerical outcomes. These issues necessitate rigorous documentation of computational provenance, including source code, version control metadata, parameter settings, and system configurations. Furthermore, containerization and virtualization technologies have emerged as pragmatic solutions to encapsulate computational environments, facilitating the faithful reproduction of experiments across heterogeneous infrastructures.

Quantitative metrics can aid the evaluation of reproducibility. For example, statistical measures such as the coefficient of variation across reproduced numerical outputs or hypothesis testing comparing original and reproduced results quantify the degree of concordance. However, reproducibility transcends numeric similarity alone; it encompasses semantic reproducibility-the capacity to reproduce the scientific reasoning and conclusions underlying the data processing pipeline. This aspect underscores the importance of clear methodological descriptions, comprehensive metadata, and interpretative context within computational manuscripts.

Institutional frameworks increasingly recognize reproducibility as a scientific norm, embedding it into editorial policies, grant funding criteria, and research evaluation protocols. Repositories for data and code, such as GitHub, Zenodo, and institutional archives, facilitate open access and long-term preservation. Standardized reporting formats and workflow management systems integrate reproducibility into research lifecycles, supporting provenance tracking and automated validation.

Despite its critical role, reproducibility faces persistent obstacles, including incentives misaligned with meticulous documentation, proprietary data restrictions, and the intrinsic stochasticity of some computational methods. Addressing these challenges requires a cultural shift whereby reproducibility is rewarded as a hallmark of research excellence, alongside efforts to develop community standards and tools that lower the barrier to reproducible practice.

Reproducibility represents both a philosophical safeguard and a practical enabler within scientific inquiry. By ensuring that computational findings can be independently verified and built upon, reproducibility fortifies the peer review process, prevents knowledge fragmentation, and accelerates cumulative discovery. Its rigorous implementation is essential to uphold the credibility, transparency, and efficiency of computational research disciplines.

1.2 Common Sources of Irreproducibility in Python Projects


Reproducibility in Python projects is often undermined by an array of technical pitfalls arising from the complexity and dynamism of the ecosystem. Central to these challenges are issues related to environmental variance, intrinsic randomization, data handling errors, dependency drift, and subtle system inconsistencies. Each factor contributes to variations in software behavior across different runs and systems, complicating debugging and scientific validation.

Environmental Variance manifests primarily through differences in operating systems, hardware architectures, and Python interpreter versions. For instance, discrepancies between execution on Windows, Linux, or macOS can cause divergent behavior due to underlying system calls and filesystem case sensitivity. Consider the handling of symbolic links: Python’s os.path module behaves differently on Windows compared to UNIX-like systems, impacting path resolution and file access.

The choice of Python interpreter itself introduces variance. Between CPython, PyPy, and alternative implementations, there are nuanced performance and semantic distinctions. Moreover, the major Python version (2.x vs. 3.x) or even minor releases (3.7 vs. 3.9) affect standard library APIs and language features, potentially breaking code compatibility.

Randomization is a fundamental source of non-determinism. Many Python libraries governing machine learning, simulations, and numerical methods embed pseudo-random number generation (PRNG). Without explicit seed setting, repeated executions yield differing results. Even with seed control, subtleties in how libraries interact can cause inconsistencies.

For example, in TensorFlow and PyTorch, layers of random initialization, multithreading, and hardware acceleration may introduce nondeterministic behavior, particularly on GPUs. Using the following commands to set seeds does not always guarantee identical outputs:

import random 
import numpy as np 
random.seed(42) 
...

Erscheint lt. Verlag 19.8.2025
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Programmiersprachen / -werkzeuge
ISBN-10 0-00-103022-1 / 0001030221
ISBN-13 978-0-00-103022-0 / 9780001030220
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)
Größe: 1,1 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Apps programmieren für macOS, iOS, watchOS und tvOS

von Thomas Sillmann

eBook Download (2025)
Carl Hanser Verlag GmbH & Co. KG
CHF 40,95
Apps programmieren für macOS, iOS, watchOS und tvOS

von Thomas Sillmann

eBook Download (2025)
Carl Hanser Verlag GmbH & Co. KG
CHF 40,95