Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
MLRun Feature Store in Practice -  William Smith

MLRun Feature Store in Practice (eBook)

The Complete Guide for Developers and Engineers
eBook Download: EPUB
2025 | 1. Auflage
250 Seiten
HiTeX Press (Verlag)
978-0-00-102879-1 (ISBN)
Systemvoraussetzungen
8,52 inkl. MwSt
(CHF 8,30)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

'MLRun Feature Store in Practice'
'MLRun Feature Store in Practice' is a comprehensive guide for data scientists, MLOps practitioners, and enterprise architects seeking to master feature store concepts, engineering workflows, and production deployment using MLRun. The book opens with a thorough exploration of feature stores as a cornerstone of modern machine learning pipelines, delving into their evolution, architectural foundations, and the unique advantages offered by MLRun over competing solutions. Readers are introduced to best practices in security, scalability, and deployment, providing a roadmap for aligning MLOps strategies with regulatory and business imperatives.
Bridging theory and real-world application, this book covers every aspect of feature engineering in distributed, real-time, and batch environments. Topics include advanced data ingestion, pipeline orchestration, point-in-time correctness, automated validation, and collaborative versioning of features. The text guides readers through the lifecycle of features, from schema design and lineage tracking to cataloging, governance, and multi-tenancy, ensuring both control and agility in large-scale, collaborative data science initiatives.
Finally, 'MLRun Feature Store in Practice' takes readers deep into the operational backbone that supports resilient, high-performance ML workflows. It details robust pipeline patterns, online and offline store architectures, end-to-end monitoring, and techniques for integrating feature stores with model pipelines. Specialized chapters address advanced use cases-ranging from real-time personalization to IoT, fraud detection, and business process automation-while practical guidance on extension, customization, performance tuning, and disaster recovery empowers organizations to transform their ML operations with confidence and efficiency.

Chapter 2
Feature Engineering in Distributed and Real-Time Environments


As data becomes more voluminous, varied, and time-sensitive, engineering robust features requires new paradigms and a mastery of distributed systems. This chapter unravels the intricacies of ingesting, transforming, and validating features in environments where latency, concurrency, and dynamism are the norm. Dive deep into advanced workflows and techniques that enable practitioners to deliver high-quality, production-ready features at scale, whether dealing with massive historical datasets or streams of real-time events.

2.1 Connecting Data Sources: Batch, Streaming, and Hybrid Sources


The integration of heterogeneous data sources is foundational for building robust, scalable feature pipelines. Such pipelines must accommodate diverse ingestion patterns, ranging from traditional batch loads to high-throughput real-time streams, and often require hybrid architectures that unify both modalities. This section dissects the technical approaches to combining these sources, emphasizing schema harmonization, common pitfalls, and strategies for seamless data alignment.

Batch Data Integration

Batch ingestion remains a cornerstone of data pipelines due to its simplicity and ability to handle large volumes of historical data. The typical batch integration workflow involves periodic extraction from relational databases, data lakes, or external files, followed by transformation and loading into feature stores. One primary challenge is the latency inherent to batch processing, which limits real-time responsiveness. Additionally, batch processes often operate on static snapshots, which complicates incremental updates when data changes frequently.

A typical batch integration pattern involves Extract-Transform-Load (ETL) processes orchestrated by schedulers such as Apache Airflow or similar workflow engines. These extract data using bulk queries or file exports, apply schema transformations and data cleansing, then ingest the processed data into target feature repositories.

SELECT user_id, 
       last_login, 
       total_purchases, 
       CASE WHEN last_login > CURRENT_DATE - INTERVAL ’30 days THEN 1 ELSE 0 END AS active_last_30_days 
FROM user_activity 
WHERE event_date >= CURRENT_DATE - INTERVAL ’90 days’;

The above query exemplifies how batch data extraction may compute features such as user activity flags over a specified time window. When integrating these batch outputs, care must be taken to ensure temporal consistency and that the feature computation windows match the model consumption requirements.

Streaming Data Integration

In contrast, streaming pipelines provide low-latency, near-real-time ingestion, essential for features that rely on the most recent data, such as clickstreams or sensor telemetry. Streaming integration is typically implemented with ingestion frameworks like Apache Kafka, Apache Pulsar, or cloud-native services such as AWS Kinesis and Google Pub/Sub. These systems handle continuous data flows with guarantees on ordering and fault tolerance.

Streaming data ingestion requires the application of windowed computations, event-time processing, and state management to aggregate feature values appropriately. Frameworks such as Apache Flink or Apache Beam enable complex event processing with exactly-once guarantees.

A canonical example involves computing rolling counts or averages over a sliding time window:

streaming_env / 
  .from_source(kafka_source, WatermarkStrategy.for_bounded_out_of_orderness(Duration.ofSeconds(10)), "kafka-source") / 
  .key_by(lambda event: event.user_id) / 
  .window(SlidingEventTimeWindows.of(Time.minutes(5), Time.seconds(30))) / 
  .aggregate(UserClickCountAggregator())

Here, a sliding window aggregates click counts per user over 5-minute intervals, updated every 30 seconds. Such streaming computations maintain ongoing feature values that evolve continuously with incoming events.

Hybrid Architectures

Hybrid architectures combine batch and streaming sources to leverage the benefits of both timeliness and comprehensive historical data. Commonly, a batch process computes time-insensitive, stable features over large historical windows, while streaming pipelines focus on recent activity or fast-moving data. Synchronizing these pipelines requires coherent data models and update policies.

One successful strategy is to architect a unified feature store that supports both batch and streaming ingestion, treating them as complementary append-only data streams segmented by temporal boundaries. A reconciliatory layer merges streaming feature updates with batch-derived baseline values, maintaining consistency across temporal dimensions.

Schema Harmonization

A pervasive challenge in integrating multiple data sources is schema heterogeneity. Different systems often expose dissimilar attribute naming conventions, data types, and structures. For...

Erscheint lt. Verlag 19.8.2025
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Programmiersprachen / -werkzeuge
ISBN-10 0-00-102879-0 / 0001028790
ISBN-13 978-0-00-102879-1 / 9780001028791
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)
Größe: 788 KB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Apps programmieren für macOS, iOS, watchOS und tvOS

von Thomas Sillmann

eBook Download (2025)
Carl Hanser Verlag GmbH & Co. KG
CHF 40,95
Apps programmieren für macOS, iOS, watchOS und tvOS

von Thomas Sillmann

eBook Download (2025)
Carl Hanser Verlag GmbH & Co. KG
CHF 40,95