Optimization Strategies with SigOpt (eBook)
250 Seiten
HiTeX Press (Verlag)
978-0-00-102719-0 (ISBN)
'Optimization Strategies with SigOpt'
'Optimization Strategies with SigOpt' is a comprehensive guide to advanced optimization techniques, with a particular focus on leveraging the SigOpt platform for practical and scalable solutions. The book begins by establishing foundational concepts in black-box optimization, examining the nuances of hyperparameter tuning, uncertainty modeling, probabilistic approaches, and the integration of constraints. Readers are equipped with a conceptual toolkit for navigating the complexities of both single- and multi-objective optimization, highlighting the distinctions between classical and modern Bayesian methodologies.
Delving into the SigOpt platform, the book provides a thorough architectural overview, walking practitioners through core components, experiment workflows, and scalable deployment patterns suitable for production environments. It illustrates the implementation of Bayesian optimization using Gaussian processes, acquisition functions, and alternative surrogate models, while discussing parallelization, resource management, and secure, fault-tolerant distributed workflows. Extensive attention is given to experiment design, robust tracking, and seamless integration into machine learning pipelines, ensuring that optimization cycles are both effective and maintainable.
Beyond technical integration, 'Optimization Strategies with SigOpt' explores advanced applications across industrial, scientific, and cutting-edge domains such as reinforcement learning, federated experiments, and customized extensions. Chapters on analysis, visualization, and interpretation of results empower users to communicate findings to stakeholders and drive impactful decision-making. The book concludes with best practices for operationalization, benchmarking, and fostering open, reproducible, and collaborative optimization processes, establishing itself as an indispensable reference for data scientists, machine learning engineers, and optimization professionals seeking to unlock the full potential of SigOpt in real-world scenarios.
Chapter 1
Principles of Black-Box Optimization
Unlocking optimal solutions when you cannot peek inside the box: This chapter dives into the theoretical and practical bedrock of black-box optimization, arming you to tackle problems where function structure, gradients, or even the search space itself resist illumination. We dissect the fundamental challenges, contrasting algorithmic strategies and formalizing how uncertainty can be harnessed rather than feared, to make informed, efficient, and robust decisions-setting the stage for world-class optimization in real and simulated domains.
1.1 Nature of Black-Box Functions
Black-box functions are defined by the absence of a known analytic form and the inaccessibility of explicit gradient information. Unlike classical functions that are represented by closed-form expressions or those amenable to symbolic differentiation, black-box functions resist direct analysis due to intrinsic complexity or the way they are defined. The only method to obtain information about such functions is by querying an underlying system-often a simulation, experiment, or deployed model-without knowledge of the internal workings. As a result, function evaluations become atomic operations whose internal mechanics remain entirely concealed.
Consider a function f :
| Erscheint lt. Verlag | 20.8.2025 |
|---|---|
| Sprache | englisch |
| Themenwelt | Mathematik / Informatik ► Informatik ► Programmiersprachen / -werkzeuge |
| ISBN-10 | 0-00-102719-0 / 0001027190 |
| ISBN-13 | 978-0-00-102719-0 / 9780001027190 |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Größe: 1,3 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich