Optimized Deep Learning on Apple Silicon with PyTorch MPS (eBook)
250 Seiten
HiTeX Press (Verlag)
978-0-00-102590-5 (ISBN)
'Optimized Deep Learning on Apple Silicon with PyTorch MPS'
'Optimized Deep Learning on Apple Silicon with PyTorch MPS' is the definitive guide for practitioners and researchers seeking to harness the full power of Apple's cutting-edge hardware for machine learning. This comprehensive book begins with an in-depth exploration of Apple Silicon's architecture, uncovering how its unified memory design, high-performance Neural Engine, and Metal-based GPU enable efficient, high-throughput AI workloads. Thoughtful comparisons with x86, CUDA, and other AI platforms equip readers with a nuanced understanding of where Apple Silicon excels and where challenges remain, particularly for edge and embedded deployments.
The text provides an advanced and practical introduction to using PyTorch's Metal Performance Shaders (MPS) backend, covering intricate details of device abstraction, operator support, memory management, and data pipelines. Readers will discover best practices for model adaptation, quantization, pruning, and mixed-precision training specifically tailored for Apple's unique hardware landscape. Step-by-step optimization techniques-ranging from efficient batch loading and asynchronous execution to advanced profiling and performance tuning-empower users to maximize model accuracy and throughput while minimizing latency and resource usage.
Going beyond core concepts, the book features real-world case studies and hands-on guidance for deploying deep learning models at scale, both on Apple devices and within hybrid, cross-platform architectures. From distributed training and Kubernetes orchestration to on-device inference, monitoring, and enterprise pipeline integration, each chapter anticipates the next generation of challenges and opportunities in AI. Alongside a forward-looking review of forthcoming Apple hardware and MPS developments, this book serves as an essential blueprint for professionals and teams intent on building robust, efficient, and future-proof AI solutions within the expanding Apple ecosystem.
Chapter 2
Introduction to PyTorch and the MPS Backend
Unlocking the full potential of Apple Silicon for deep learning hinges not just on hardware, but on cutting-edge software infrastructure. This chapter takes you deep inside PyTorch and its Metal Performance Shaders (MPS) backend, revealing how modern abstractions, device management, and a fast-evolving ecosystem allow you to run advanced models natively on the Mac. By mastering MPS and its integration with PyTorch, you will navigate both the technical subtleties and pragmatic workflows necessary for lightning-fast model training and inference on Apple devices.
2.1 PyTorch Internals: Tensor Operations and Autograd
At the heart of PyTorch lies a sophisticated computational core that efficiently manages tensor operations and automatic differentiation via its autograd system. Understanding this core requires an examination of how tensors are represented, manipulated, and tracked throughout computation, as well as how these mechanisms integrate with specific hardware backends such as the Metal Performance Shaders (MPS) backend on Apple silicon devices. This section unpacks these foundational aspects, revealing both the versatility of PyTorch’s design and the unique challenges encountered when extending support to heterogeneous architectures.
Tensor Operations and Storage Models
A PyTorch Tensor is a multi-dimensional array that encapsulates numerical data along with metadata describing its shape, datatype, device location, and gradient tracking attributes. The underlying storage of a tensor is a contiguous or strided block of memory, abstracted as Storage, which can reside on CPU, CUDA-enabled GPUs, or now, through the MPS backend, Apple GPUs.
Each tensor maintains a view onto this storage via strides and offset, enabling complex slicing and broadcasting without redundant data copies. PyTorch employs a reference-counted Storage model, ensuring efficient memory utilization by supporting multiple tensor views on shared data buffers.
When a tensor operation is invoked, PyTorch executes a corresponding native kernel, often leveraging hardware-accelerated libraries (e.g., cuBLAS, MPS kernels). For instance, an element-wise addition invokes a highly optimized parallel kernel on the dispatched device. The tensor operation API is designed to be device-agnostic: the same Python-level call generates device-specific kernels under the hood.
The MPS backend introduces a novel storage interaction layer, mapping tensor memory to Metal buffers optimized for Apple GPUs. Unlike CUDA, where explicit memory management is mature, the MPS backend must contend with Metal’s resource lifecycles and command encoding semantics, requiring careful synchronization to maintain coherence between CPU and GPU memory. Moreover, data transfer and tensor reshaping introduce latency considerations uncommon in mature CUDA executions.
Dynamic Computation Graph and Autograd
PyTorch’s dynamic computation graph, managed through the autograd engine, automatically records operations to facilitate gradient computation via reverse-mode differentiation. This dynamic graph contrasts with static graph frameworks by constructing computational graphs on-the-fly during the forward pass.
Internally, each tensor with requires_grad=True is associated with a grad_fn object, representing the function that created it. These Function objects form a directed acyclic graph (DAG), where nodes contain both forward computation metadata and backward methods implementing gradient formulas. When backward() is called on a loss tensor, PyTorch traverses this graph in reverse, computing gradients by invoking the backward hooks of each function.
The autograd engine stores intermediate buffers crucial for gradient computation, like saved inputs or outputs during forward passes. These buffers pose significant memory overhead, especially in deep or wide networks, motivating checkpointing and memory optimization techniques.
On the MPS backend, autograd faces distinct challenges. Metal’s command buffer architecture is designed primarily for graphics workloads, with less native support for fine-grained synchronization. PyTorch must ensure that all forward computations are finished and data is properly synchronized before gradient computations begin. This necessitates explicit MPS command buffer completions or synchronization points in autograd’s engine. Additionally, debugging becomes more complex, as error messages and stack traces may involve GPU-side operations without traditional CUDA debugging tools.
# Set device to MPS if available
device = torch.device(’mps’ if torch.has_mps else ’cpu’)
# Create tensors with gradient tracking
x = torch.randn(3, 3, device=device, requires_grad=True)
y = torch.randn(3, 3, device=device, requires_grad=True)
# Perform operations
z = x * y + y
# Compute sum for backward pass
loss = z.sum()
loss.backward()
print(x.grad)
...
| Erscheint lt. Verlag | 20.8.2025 |
|---|---|
| Sprache | englisch |
| Themenwelt | Mathematik / Informatik ► Informatik ► Programmiersprachen / -werkzeuge |
| ISBN-10 | 0-00-102590-2 / 0001025902 |
| ISBN-13 | 978-0-00-102590-5 / 9780001025905 |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Größe: 699 KB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich