Seldon Core for Kubernetes Model Deployment (eBook)
250 Seiten
HiTeX Press (Verlag)
978-0-00-102435-9 (ISBN)
'Seldon Core for Kubernetes Model Deployment'
'Seldon Core for Kubernetes Model Deployment' offers an in-depth, practical guide to deploying and managing machine learning models on Kubernetes using the powerful open-source Seldon Core platform. Designed for ML engineers, MLOps practitioners, and platform architects, the book balances foundational concepts with hands-on technical detail. It begins by establishing the context for model deployment challenges, contrasting Seldon Core with other leading frameworks, and providing the essential Kubernetes knowledge needed for ML workloads.
The architecture and capabilities of Seldon Core are dissected in detail, from the inner workings of custom deployments, inference graphs, and extension points to traffic management and advanced deployment patterns. Readers are guided through installation strategies, security and compliance enforcement, resource optimization, and scalable serving of both traditional ML models and large transformer-based architectures. Practical advice is provided for packaging and testing models, integrating with workflow engines and feature stores, designing enterprise-grade observability pipelines, and ensuring resilient, cost-effective operations.
Enriched with real-world enterprise case studies, hybrid multi-cloud patterns, and forward-looking discussions on governance and future trends, this book is a definitive resource for production-grade model serving. Whether you are deploying your first model or scaling inference across teams and clouds, 'Seldon Core for Kubernetes Model Deployment' equips you with the expertise and best practices to deliver robust, compliant, and high-performance ML solutions at scale.
Chapter 2
Seldon Core Architecture and Key Concepts
Unlock the essential mechanisms that empower Seldon Core to deliver production-grade model serving at scale. This chapter demystifies the inner workings of deployment orchestration, model pipelines, and extensibility within Kubernetes, revealing how Seldon Core harmonizes complex machine learning workflows with cloud-native primitives. Prepare to navigate the blueprint of intelligent application delivery and explore the foundational patterns and APIs that make advanced MLOps possible.
2.1 Custom Resource Definitions and the SeldonDeployment CR
Kubernetes Custom Resource Definitions (CRDs) extend the Kubernetes API to support domain-specific abstractions beyond the standard primitive resources. By defining these custom resources, operators enable developers to work with higher-level declarative constructs that encapsulate complex application logic and lifecycle management within native Kubernetes workflows. The declarative nature of CRDs underpins reproducibility and control, ensuring that system state converges towards the user-defined specification, with the Kubernetes control plane and associated operators handling reconciliation automatically.
The SeldonDeployment is a prime example of a CRD tailored for machine learning (ML) model serving within Kubernetes. It defines an abstract, extensible API object that represents an entire ML inference service deployment, including one or more predictive models, routing logic, scaling parameters, and operational metadata. This object serves as a single source of truth for the service definition and acts as a control point for the lifecycle management of ML services.
At the core, the SeldonDeployment CR encapsulates the specification of ML model deployment components:
- Predictive Unit Definitions: Each predictive unit corresponds to a model or transformer container, annotated with implementation and interface details such as model type, protocol (REST or gRPC), resource requests, and readiness probes.
- Graph Topology: The deployment schema specifies predictive units organized as directed acyclic graphs, where nodes represent models or transformers and edges define request or response flow. This allows complex ensembles, feature transformations, and fallback mechanisms.
- Routing and Traffic Management: Configurations such as shadow deployments, canary models, or weighted request routing are embedded within the topology to facilitate controlled rollout strategies and experimentation.
- Resource and Autoscaling Policies: Useful directives for CPU/memory requests, limits, and integration with Kubernetes Horizontal Pod Autoscaler (HPA) or custom metrics enable efficient resource utilization and reliability at scale.
- Monitoring and Explainer Annotations: Integration with metrics exporters, logging, tracing, and model explainability frameworks is declaratively incorporated, simplifying observability.
The SeldonDeployment CR schema follows Kubernetes conventions to maintain API versioning, validation, and backward compatibility. It is expressed in YAML or JSON manifest files, adhering strictly to the declaration-with-reconciliation model integral to Kubernetes. This means that an application developer or an ML engineer defines the desired state in a manifest and submits it to the Kubernetes API server. Controllers (operators) continuously observe the cluster state and automatically create, update, or delete the underlying primitives such as Pods, Services, and ConfigMaps to realize the desired deployment.
Declaring an ML service using SeldonDeployment abstracts away details of low-level Kubernetes resource orchestration and exposes a domain-specific API centered on ML workflows. This approach brings several advantages:
- Reproducibility: The declarative manifest can be version-controlled alongside model artifacts, allowing exact recreation of the ML inference environment in separate clusters or across time.
- Control and Observability: Operators enforce spec compliance and emit detailed events reflecting the reconciliation process, improving debugging and operational visibility.
- Extensibility and Portability: By expressing ML services as CRs, the ecosystem can evolve custom extensions and tooling without modifying core Kubernetes components.
- Integration: The use of standard Kubernetes RBAC, admission controllers, and namespaces ensures security and operational consistency in multi-tenant environments.
An abbreviated example of a SeldonDeployment manifest illustrates the core structure:
kind: SeldonDeployment
metadata:
name: iris-classifier
spec:
predictors:
- graph:
name: iris-model
implementation: SKLEARN_SERVER
modelUri: gs://model-bucket/irismodel
name: predictor-1
replicas: 3
componentSpecs:
- spec:
containers:
- name: classifier
...
| Erscheint lt. Verlag | 20.8.2025 |
|---|---|
| Sprache | englisch |
| Themenwelt | Mathematik / Informatik ► Informatik ► Programmiersprachen / -werkzeuge |
| ISBN-10 | 0-00-102435-3 / 0001024353 |
| ISBN-13 | 978-0-00-102435-9 / 9780001024359 |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Größe: 698 KB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich