Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Prefect Orion Automation and Orchestration -  William Smith

Prefect Orion Automation and Orchestration (eBook)

The Complete Guide for Developers and Engineers
eBook Download: EPUB
2025 | 1. Auflage
250 Seiten
HiTeX Press (Verlag)
978-0-00-102397-0 (ISBN)
Systemvoraussetzungen
8,52 inkl. MwSt
(CHF 8,30)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

'Prefect Orion Automation and Orchestration'
Unlock the full potential of modern workflow automation with 'Prefect Orion Automation and Orchestration,' the definitive technical guide to mastering Prefect Orion. This comprehensive volume delves into the architectural evolution from Prefect 1.0 to Orion, offering readers a thorough grounding in core concepts, event-driven orchestration models, and the state-driven mechanisms that set Orion apart as a powerful platform for distributed and dynamic workflow automation. Through clear explanations of flow and task lifecycle management, extensible APIs, and sophisticated telemetry, readers will gain a robust foundation in designing, monitoring, and scaling production-grade orchestration systems.
Meticulously structured, the book navigates through advanced topics including dynamic task graph engineering, real-time scheduling, concurrency, and resilient error handling. Learn to compose modular, maintainable flows; implement complex control logic; and manage resources efficiently, leveraging features such as automated backfilling, rate limiting, external triggers, and self-healing recovery mechanisms. Deployment guidance spans from cloud-native and local environments to multi-region and edge architectures, complemented by chapters on security models, RBAC, secrets management, compliance, and auditability.
'Prefect Orion Automation and Orchestration' goes beyond theory with practical insights into integration, extensibility, and observability, empowering engineers to connect with data lakes, external APIs, and enterprise-grade tools. The book culminates in advanced use cases and forward-looking perspectives on AI-driven automation, autonomous orchestration, and community-driven ecosystem growth. Whether you are designing ETL pipelines, managing machine learning workflows, or orchestrating business-critical processes across hybrid clouds, this authoritative guide will equip you to build reliable, scalable, and future-ready automation solutions with Prefect Orion.

Chapter 2
Advanced Task and Flow Engineering


Step into the inner sanctum of automation engineering-where flows become modular, tasks grow dynamic, and orchestration reveals its true power. This chapter unlocks the advanced toolkit of Prefect Orion, guiding you through the disciplines of constructing scalable, parameterized, and resilient workflows for the most demanding environments. Discover new patterns for control flow, fault tolerance, and observability that will let you push the boundaries of what your automation can achieve.

2.1 Dynamic Mapping and Task Generators


Advanced data processing pipelines require flexibility in task orchestration to handle datasets of unpredictable size and structure efficiently. Static task graphs, while straightforward to design, are inherently limited when input scales or formats vary dynamically at runtime. Dynamic mapping and task generator constructs empower pipeline designers to create adaptable, parameterized workflows that scale parallel execution seamlessly, aligning computational resources with real-time workload characteristics.

Dynamic mapping refers to the capability to instantiate and execute multiple parallel task instances based on dataset characteristics discovered during pipeline execution. Unlike static mapping-where the number and parameters of tasks are fixed prior to execution-dynamic mapping constructs allow the workflow engine to spawn tasks according to runtime metadata, such as the number of files, data partitions, or detected features.

Consider an input directory containing an unknown number of data chunks. A static design would rely on fixed iteration, risking inefficiency or failure when the chunk count deviates from expected. Dynamic mapping performs an initial metadata discovery step to generate a list of processing units, then maps a processing task over this list.

def discover_input_chunks(input_dir): 
    # Enumerate files or data units dynamically 
    return [f’{input_dir}/chunk_{i}.dat for i in range(get_chunk_count(input_dir))] 
 
def process_chunk(chunk_file): 
    # Task: process a single data chunk 
    pass 
 
chunks = discover_input_chunks(’/data/input’) 
# Dynamically map processing task to discovered chunks 
results = map(process_chunk, chunks)

This design decouples task parallelism extent from prior assumptions, enhancing scalability and robustness. The key is a generator of task parameters that feeds the dynamic map with accurate task payloads.

Fan-out is an architectural pattern where a single control flow expands into multiple concurrent tasks. In a dynamic context, fan-out amplifies parallelism by creating branches dictated by runtime conditions. This pattern complements dynamic mapping by allowing branches to execute independently and in parallel, significantly improving throughput.

For example, a data aggregation pipeline might fan-out over detected data partitions:

  • Identify partitions (discovery stage).
  • Map a processing task onto each partition in parallel (fan-out).
  • Optionally fan-in results for aggregation.

The mapping and fan-out stages can co-exist in the same workflow, with the fan-out step inheriting its expansion parameters dynamically.

partitions = discover_partitions(’/data/partitions’) 
 
@task 
def analyze_partition(partition_id): 
    # Compute resource-intensive analytics on this partition 
    pass 
 
# Fan-out: spawn parallel tasks for each partition 
analysis_results = [] 
for pid in partitions: 
...

Erscheint lt. Verlag 19.8.2025
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Programmiersprachen / -werkzeuge
ISBN-10 0-00-102397-7 / 0001023977
ISBN-13 978-0-00-102397-0 / 9780001023970
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)
Größe: 812 KB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Apps programmieren für macOS, iOS, watchOS und tvOS

von Thomas Sillmann

eBook Download (2025)
Carl Hanser Verlag GmbH & Co. KG
CHF 40,95
Apps programmieren für macOS, iOS, watchOS und tvOS

von Thomas Sillmann

eBook Download (2025)
Carl Hanser Verlag GmbH & Co. KG
CHF 40,95