High Dimensional Probability X
Springer International Publishing (Verlag)
978-3-032-06056-3 (ISBN)
- Noch nicht erschienen - erscheint am 13.02.2026
- Versandkostenfrei
- Auch auf Rechnung
- Artikel merken
This volume collects selected papers from the Tenth High Dimensional Probability conference, held from June 12 to 16, 2023 in Bedlewo, Poland. These papers cover a wide range of topics and demonstrate how high-dimensional probability remains an active area of research with applications across many mathematical disciplines. Topics covered include:
- The Gram-Schmidt walk algorithm;
- Variance bounds;
- Random interlacements;
- Contraction theorems on the half-space.
High Dimensional Probability X will be a valuable resource for researchers in this area.
Chapter 1 Optimal constants in concentration inequalities on the sphere and in the Gauss space.- Chapter 2 Some remarks on the Gram-Schmidt walk algorithm and consequences for Komlos conjecture.- Chapter 3 Some notes on moment inequalities for heavy-tailed distributions.- Chapter 4 Stability of Klartag s improved Lichnerowicz inequality.- Chapter 5 Variance bounds: some old and some new.- Chapter 6 Some obstructions to contraction theorems on the half-sphere.- Chapter 7 Dimension-free comparison estimates for suprema of some canonical processes.- Chapter 8 Sharp phase transitions in Euclidean integral geometry.- Chapter 9 Fourier analytic bounds for Zolotarev distances, and applications to empirical measures.- Chapter 10 A note on the fluctuations of the resolvent traces of a tensor model of sample covariance matrices.- Chapter 11 New Berry-Esseen bounds for random sums of centered random variables.- Chapter 12 The large and moderate deviations approach in geometric functional.- Chapter 13 Random interlacements: the discontinuous case.- Chapter 14 Local moduli of continuity for permanental processes that are zero at zero.- Chapter 15 Estimation of trace functionals and spectral measures of covariance operators in Gaussian models.- Chapter 16 Higher-order perturbation expansions for eigenvalues and eigenprojections I: simple eigenvalues and random perturbations.
| Erscheinungsdatum | 29.11.2025 |
|---|---|
| Reihe/Serie | Progress in Probability |
| Zusatzinfo | X, 390 p. 23 illus., 21 illus. in color. |
| Verlagsort | Cham |
| Sprache | englisch |
| Maße | 155 x 235 mm |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik |
| Schlagworte | classical limit theorems • Contraction theorems • Euclidean integral geometry • Gaussian processes • Gauss space • Gram-Schmidt walk algorithm • Heavy-tailed distribution • high dimensional probability • laws of large numbers • Random interlacements • Stochastic Processes • Variance bounds • Zolotarev distances |
| ISBN-10 | 3-032-06056-7 / 3032060567 |
| ISBN-13 | 978-3-032-06056-3 / 9783032060563 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
aus dem Bereich