Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
High-Dimensional Probability - Roman Vershynin

High-Dimensional Probability

An Introduction with Applications in Data Science

(Autor)

Buch | Hardcover
346 Seiten
2026 | 2nd Revised edition
Cambridge University Press (Verlag)
978-1-009-49064-1 (ISBN)
CHF 113,45 inkl. MwSt
  • Noch nicht erschienen (ca. März 2026)
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
This new edition of 'High-Dimensional Probability,' winner of the 2019 PROSE Award in Mathematics, offers an accessible and friendly introduction to key probabilistic methods for mathematical data scientists. Updated with 200 new exercises, it's ideal for a course or self-study, requiring only an undergraduate background in probability.
'High-Dimensional Probability,' winner of the 2019 PROSE Award in Mathematics, offers an accessible and friendly introduction to key probabilistic methods for mathematical data scientists. Streamlined and updated, this second edition integrates theory, core tools, and modern applications. Concentration inequalities are central, including classical results like Hoeffding's and Chernoff's inequalities, and modern ones like the matrix Bernstein inequality. The book also develops methods based on stochastic processes – Slepian's, Sudakov's, and Dudley's inequalities, generic chaining, and VC-based bounds. Applications include covariance estimation, clustering, networks, semidefinite programming, coding, dimension reduction, matrix completion, and machine learning. New to this edition are 200 additional exercises, alongside extra hints to assist with self-study. Material on analysis, probability, and linear algebra has been reworked and expanded to help bridge the gap from a typical undergraduate background to a second course in probability.

Roman Vershynin is Professor of Mathematics at the University of California, Irvine. He is an expert on randomness in mathematics and data science, especially in high-dimensional probability, statistics, and machine learning. His influential work has earned numerous honors including an invited ICM lecture, the Bessel Research Award, the IMS Medallion Award, and the 2019 PROSE Award for the first edition of this book.

Foreword Sara van de Geer; Preface; Appetizer. Using probability to cover a set; 1. A quick refresher on analysis and probability; 2. Concentration of sums of independent random variables; 3. Random vectors in high dimensions; 4. Random matrices; 5. Concentration without independence; 6. Quadratic forms, symmetrization, and contraction; 7. Random processes; 8. Chaining; 9. Deviations of random matrices on sets; Hints for the exercises; References; Index.

Erscheint lt. Verlag 31.3.2026
Reihe/Serie Cambridge Series in Statistical and Probabilistic Mathematics
Zusatzinfo Worked examples or Exercises
Verlagsort Cambridge
Sprache englisch
Gewicht 500 g
Themenwelt Mathematik / Informatik Informatik Theorie / Studium
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
ISBN-10 1-009-49064-8 / 1009490648
ISBN-13 978-1-009-49064-1 / 9781009490641
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
was jeder über Informatik wissen sollte

von Timm Eichstädt; Stefan Spieker

Buch | Softcover (2024)
Springer Vieweg (Verlag)
CHF 53,15
Teil 2 der gestreckten Abschlussprüfung Fachinformatiker/-in …

von Dirk Hardy; Annette Schellenberg; Achim Stiefel

Buch | Softcover (2025)
Europa-Lehrmittel (Verlag)
CHF 37,90