Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
GPT Meets Game Theory - Hamidou Tembine

GPT Meets Game Theory

Training and Optimizing Generative AI Models

(Autor)

Buch | Hardcover
298 Seiten
2026
CRC Press (Verlag)
978-1-041-12409-2 (ISBN)
CHF 259,95 inkl. MwSt
  • Noch nicht erschienen (ca. März 2026)
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
This book explores a new way to understand and employ neural networks through the lens of game theory. This is an illuminating read for computer science, engineering, and mathematics researchers interested in the mathematical underpinnings of deep learning models.
Game theory systems can be seen as players working together or competing to achieve goals. GPT Meets Game Theory explores a new way to understand and employ neural networks through the lens of game theory. Focusing on transformers, the engines behind today’s most advanced AI, it explains key mathematical concepts and strategies in a clear, accessible way.

As AI models are growing larger and taking on more data, GPT Meets Game Theory draws from biology, physics, as well as game theory, to help readers understand how we can interpret and guide the models’ behavior. It also looks at how these ideas apply to "mean-field" models and how they can be used in situations like federated learning, where many devices work together to train an AI system. The book shows how choosing the right AI design and training method is like making strategic moves in a game - especially when multiple AI agents are involved.

GPT Meets Game Theory offers an illuminating read for computer science, engineering, and mathematics researchers interested in the mathematical underpinnings of deep learning models, particularly transformers, and also for those who are curious about how game theory can apply to the training and optimisation of these models.

Hamidou Tembine is a professor of machine intelligence at the University of Quebec in Trois-Rivieres, Canada, and the co-founder of Timadie, which is a platform of platforms that brings together companies, laboratories, and professional associations.

1. Deep Learning Meets Game Theory 2. Mathematics of Transformers 3. Extremely Large Transformers 4. Mean-Field-Type Transformers 5. Mean-Field-Type Learning 6. Strategic Deep Learning

Erscheint lt. Verlag 11.3.2026
Zusatzinfo 28 Tables, black and white; 50 Line drawings, black and white; 50 Illustrations, black and white
Verlagsort London
Sprache englisch
Maße 178 x 254 mm
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Angewandte Mathematik
Mathematik / Informatik Mathematik Finanz- / Wirtschaftsmathematik
ISBN-10 1-041-12409-0 / 1041124090
ISBN-13 978-1-041-12409-2 / 9781041124092
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Künstliche Intelligenz, Macht und das größte Dilemma des 21. …

von Mustafa Suleyman; Michael Bhaskar

Buch | Softcover (2025)
C.H.Beck (Verlag)
CHF 25,20