DINO (eBook)
250 Seiten
HiTeX Press (Verlag)
978-0-00-097333-7 (ISBN)
'DINO: Self-Supervised Vision Transformers Explained'
'DINO: Self-Supervised Vision Transformers Explained' offers a comprehensive and rigorous exploration of one of the most influential self-supervised learning methods for visual representation-DINO-as applied to Vision Transformers (ViTs). The book opens by charting the evolution of computer vision, tracing the shift from traditional supervised and convolutional paradigms to the rise of transformer-based architectures and self-supervised learning. With a clear-eyed examination of the limitations of supervised methods and the architectural motivations behind modern transformers, readers are equipped with foundational knowledge that frames the necessity and promise of self-supervised ViTs.
Delving into the heart of DINO, the text systematically unpacks the method's core concepts, including teacher-student architectures, self-distillation mechanics, and multi-crop augmentation strategies. Readers will find in-depth technical discussions on essential components such as multi-head self-attention, positional encoding, projection heads, and key regularization techniques. Practical engineering guidance accompanies theoretical explanations, featuring detailed advice on large-scale pretraining, distributed training, augmentation strategies, parameter tuning, and troubleshooting instability-making this work both accessible and actionable for practitioners and researchers.
Beyond the mechanics of model training, the book thoughtfully addresses the evaluation and deployment of DINO models in real-world and cross-domain scenarios-from medical imaging to satellite and industrial vision. It provides comparative studies with other self-supervised paradigms, best practices for reproducibility and open-source collaboration, and careful consideration of security, privacy, fairness, and ethical deployment. Concluding with a forward-looking view, the book identifies open research challenges and opportunities for DINO, positioning it as an essential reference for anyone seeking to understand or advance the field of self-supervised vision transformers.
Chapter 2
Core Concepts in DINO Self-Supervised Vision Transformers
DINO introduces a bold paradigm for self-supervised learning with Vision Transformers—eschewing the need for annotated data, it leverages distillation, architectural ingenuity, and data augmentation to uncover rich and robust visual representations. This chapter unpacks the foundational mechanisms and design principles that make DINO unique, guiding readers through its theoretical and practical underpinnings and illuminating how it advances the state of self-supervised vision.
2.1 DINO: Distillation with No Labels
DINO (Distillation with No Labels) introduces a self-supervised learning paradigm distinguished by its teacher-student framework that leverages knowledge distillation without relying on explicit class labels. This methodology achieves state-of-the-art performance by encouraging the emergence of semantically meaningful and invariant visual representations directly from unlabeled data. The approach is formally grounded in a distillation objective that aligns the outputs of two neural networks-termed the student and the teacher-trained simultaneously under distinct update regimes.
Let
| Erscheint lt. Verlag | 24.7.2025 |
|---|---|
| Sprache | englisch |
| Themenwelt | Mathematik / Informatik ► Informatik ► Programmiersprachen / -werkzeuge |
| ISBN-10 | 0-00-097333-5 / 0000973335 |
| ISBN-13 | 978-0-00-097333-7 / 9780000973337 |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Größe: 1,1 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich