Mathematical Models for Interacting Dynamics on Networks
Springer International Publishing (Verlag)
978-3-032-02325-4 (ISBN)
- Noch nicht erschienen - erscheint am 18.02.2026
- Versandkostenfrei
- Auch auf Rechnung
- Artikel merken
This volume provides a broad overview of state-of-the-art research on dynamical systems on networks. The chapters are based on contributions to the Final Conference of the COST Action 'CA18232: Mat-Dyn-Net: Mathematical Models for Interacting Dynamics on Networks. Specific topics covered include:
- Spectral theory, and mathematical physics
- Kinetic and transport equations
- Biological and biomedical models
- Differential operators and differential equations
Mathematical Models for Interacting Dynamics on Networks will appeal to researchers interested in these active areas.
A review of a work by L. Raymond: Sturmian Hamiltonians with a large coupling constant - periodic approximations and gap labels.- Compactness of linearized Boltzmann operators for polyatomic gases.- Discrete Boltzmann Equation for Anyons.- Action potential dynamics on heterogenous neural networks: from kinetic to macroscopic equations.- A space-dependent Boltzmann-BGK model for gas mixtures and its hydrodynamic limits.- A delayed model for tumor-immune system interactions.- Geometric optimization problem for vascular stents.- Journey Through the World of Dynamical Systems on Networks.- A Payne-Whitham model of urban traffic networks in the presence of traffic lights and its application to traffic optimisation.- A Novel Use of Pseudospectra in Mathematical Biology: Understanding HPA Axis Sensitivity.- The virial theorem and the method of multipliers in spectral theory.- Well-posedness and long-term behaviour of buffered flows in infinite networks.- Numerical Study of the Higher-Order Maxwell-Stefan Model of Diffusion.- Fourth-order operators with unbounded coefficients in $L^1$ spaces.- Graph structure of the nodal set and bounds on the number of critical points of eigenfunctions on Riemannian manifolds.- Investigating dynamics and asymptotic trend to equilibrium in a reactive BGK model.- Polynomial Stability of a Coupled Wave-Heat Network.
| Erscheinungsdatum | 29.11.2025 |
|---|---|
| Reihe/Serie | Trends in Mathematics |
| Zusatzinfo | X, 381 p. 69 illus., 45 illus. in color. |
| Verlagsort | Cham |
| Sprache | englisch |
| Maße | 155 x 235 mm |
| Themenwelt | Mathematik / Informatik ► Informatik ► Theorie / Studium |
| Mathematik / Informatik ► Mathematik ► Angewandte Mathematik | |
| Schlagworte | biomedical models • Collisional kinetic theory • Coupled Systems • Dynamical Systems • evolution equation • Neural networks • Numerical analysis of coupled PDEs • PDEs on metric graphs • quantum mechanics • Spectrum of quantum graphs |
| ISBN-10 | 3-032-02325-4 / 3032023254 |
| ISBN-13 | 978-3-032-02325-4 / 9783032023254 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
aus dem Bereich