Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Advanced Hybrid Information Processing -

Advanced Hybrid Information Processing

8th International Conference, ADHIP 2024, Jiaxing, China, September 20–22, 2024, Proceedings, Part II
Buch | Softcover
XIII, 442 Seiten
2025
Springer International Publishing (Verlag)
978-3-032-00299-0 (ISBN)
CHF 134,80 inkl. MwSt
  • Versand in 15-20 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken

This four-volume set constitutes the post-conference proceedings of the 8th EAI International Conference on Advanced Hybrid Information Processing, ADHIP 2024, held in Jiaxing, China, during September 20-22, 2024.

The 115 full papers included in this book were carefully reviewed and selected from 297 submissions. They focus on the following topical sections:

Part I: Signal Processing and Enhancement; Information Fusion and Integration.

Part II: Information Fusion and Integration; Intelligent Computing and Machine Learning.

Part III: Intelligent Computing and Machine Learning; Applications and Intelligent Systems.

Part IV: Applications and Intelligent Systems

.- A Multi-source Fusion Collection Method of Digital Economic Development Data for Rural Revitalization.

.- A Three-dimensional Geographic Information Fusion Method Based on a Cascade Forest Model for Railroad Engineering in the Monsoon Frozen Zone.

.- A Cross-border E-commerce Logistics Path Optimization Method Based on IoT Data Fusion.

.- Research on the Integration of University Research Information Resources based on Multi-source Information Fusion.

.- A Study on Multi-source Fusion Methodology for Rural Revitalization and Development Data under Digital Governance.

.- A Three-dimensional Point Cloud Fusion Method for Ceramic Artifacts Based on Graph Neural Networks.

.-  Research on the Integration Method of Digitized Regional Cultural Resources Based on Fuzzy Clustering.

.- A Study of Web-based Multi-source Heterogeneous Information Integration for Blended English Language Teaching and Learning.

.- Research on Intelligent Fusion Method of Social Media News Information Based on Reinforcement Learning.

.-  An Intelligent Prediction Method for Green Development Trend of Sports Industry by Integrating Multi-Channel Data.

.- Personalized Push of MOOC English Teaching Resources Based on Multi-source Information Fusion.

.-  A UAV Image Fusion Filtering Method Based on Fully Convolutional Twin Networks.

.- Economic Information Fusion Methold of Internet of Things Based on Genetic Algorithm.

.- Intelligent Computing and Machine Learning.

.- Synergizing Motion and Deep Features for Enhanced Ship Type Classification Through Deep Learning Fusion on AIS Data.

.- The Design of a Deep Learning-based Recommendation System for Teaching Resources in Distance Education Microcourses.

.- A Study on the Optimization Method for Real-time Querying of Regionalized Project Data Based on Improved Genetic Algorithm.

.- A Graph Neural Network-based Safety Assessment Method for High-Rise Building Construction.

.- A Graph Neural Network-based Enhancement Method for Terahertz Spectral Imaging.

.- A Graph Neural Network-based Method for Intelligent Acquisition of Linguistic Features for English Translation.

.-  A Deep Learning and Graph Neural Network-based Approach to Sharing Quality Teaching Resources in Civics.

.- A Study of Intelligent Recognition Algorithms for Korean Characters Based on Deep Learning to Improve Long and Short-term Memory.

.- An Approach to Categorizing Financial Text Information Based on Attention Mechanism and Multiple Feature Fusion.

.- An Intelligent Prediction Method for Employee Turnover Propensity in Enterprises Based on Recurrent Neural Networks.

.-  A Personalized Recommendation Method for Ideological and Political Resources Based on Reinforcement Learning and Evolutionary Computing.

.- A Deep Learning and Neural Network Based Approach to Financial Risk Identification.

.- A Deep Learning and Graph Neural Network Based Approach for Financial Image Quality Enhancement.

.- Bi-LSTM Based Intelligent Prediction Method for Public Opinion Dissemination Effect of Emergencies.

.-  A Deep Learning and Graph Neural Network Based Method for Fusion of Player Action Images for Volleyball Teaching and Training Matches.

.- A Method for Automatic Generation of Decorative Patterns for Volleyball Training Uniforms Based on Generative Adversarial Networks.

.- A Deep Recursive Reinforcement Learning Based Optimization Method for Campus Ecological Landscape Planning and Layout.

Erscheinungsdatum
Reihe/Serie Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering
Zusatzinfo XIII, 442 p. 138 illus., 53 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Schlagworte computer vision • data integration • Data Mining • Deep learning • Human-Computer Interaction (HCI) • Information Fusion • Internet of Things (IoT) • machine learning • Neural networks • optimization algorithms • Reinforcement Learning • Security and Privacy • Signal Processing • wireless communication
ISBN-10 3-032-00299-0 / 3032002990
ISBN-13 978-3-032-00299-0 / 9783032002990
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
eine Einführung mit Python, Scikit-Learn und TensorFlow

von Oliver Zeigermann; Chi Nhan Nguyen

Buch | Softcover (2024)
O'Reilly (Verlag)
CHF 27,85
Von den Grundlagen bis zum Produktiveinsatz

von Anatoly Zelenin; Alexander Kropp

Buch (2025)
Hanser (Verlag)
CHF 69,95