Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Geometric Analysis on the Heisenberg Group and Its Generalizations -  American Mathematical Society

Geometric Analysis on the Heisenberg Group and Its Generalizations

Buch | Hardcover
2007
American Mathematical Society (Verlag)
978-0-8218-4319-2 (ISBN)
CHF 113,45 inkl. MwSt
  • Titel z.Zt. nicht lieferbar
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
The theory of subRiemannian manifolds is closely related to Hamiltonian mechanics. This book examines the properties and applications of subRiemannian manifolds that automatically satisfy the Heisenberg principle, which may be useful in quantum mechanics.
The theory of subRiemannian manifolds is closely related to Hamiltonian mechanics. In this book, the authors examine the properties and applications of subRiemannian manifolds that automatically satisfy the Heisenberg principle, which may be useful in quantum mechanics. In particular, the behavior of geodesics in this setting plays an important role in finding heat kernels and propagators for Schrodinger's equation. One of the novelties of this book is the introduction of techniques from complex Hamiltonian mechanics. Information for our distributors: Titles in this series are co-published with International Press, Cambridge, MA.

Geometric mechanics on the Heisenberg group Geometric analysis of step 4 case The geometric analysis of step $2(k+1)$ case Geometry on higher dimensional Heisenberg groups Complex Hamiltonian mechanics Quantum mechanics on the Heisenberg group Bibliography Index.

Erscheint lt. Verlag 30.5.2007
Reihe/Serie AMS/IP Studies in Advanced Mathematics
Zusatzinfo Illustrations
Verlagsort Providence
Sprache englisch
Gewicht 600 g
Themenwelt Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Geometrie / Topologie
ISBN-10 0-8218-4319-2 / 0821843192
ISBN-13 978-0-8218-4319-2 / 9780821843192
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich