Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Birding with AI - Ronald T. Kneusel

Birding with AI

Concepts and Projects for Ornithology
Buch | Hardcover
212 Seiten
2025
Pelagic Publishing (Verlag)
978-1-78427-602-7 (ISBN)
CHF 104,70 inkl. MwSt
  • Versand in 15-20 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
Birding with AI introduces birders, ornithologists and related professionals to modern artificial intelligence as it applies to ornithology. The book explores existing AI-based birding tools and then delves into the essence of AI to build intuition, enabling readers to understand the projects that follow. 
Birding with AI introduces readers to the increasingly ubiquitous realm of artificial intelligence and its applications in ornithology and wildlife biology. As well as showcasing the potential utility of deep learning in ornithology, the book demonstrates how to understand, design, implement and evaluate AI models for ornithology and related fields.



Readers will learn:

- The background of AI, specifically deep learning, and how it applies to image interpretation.

- How to build deep-learning models for computer vision and how to compile bird image

- About the use of pretrained models, especially CLIP, which alone is capable of out-of-the-box bird detection with high accuracy.

- Tailoring CLIP-embedding models with small datasets for specific classification tasks.

- How to create models that go beyond classification to localization.

- How to classify bird audio recordings.

- How to use open source tools like Merlin and BirdNet to augment research-question specific models.



This ground-breaking volume adopts an approach based on exploring existing birding tools using AI, leading to an overview of artificial intelligence that will help build intuition about how it works. This provides a foundation for the example projects that follow, enhancing the reader’s confidence in their ability to engage and participate in research involving AI. The projects are designed to guide the reader through the model-building process from dataset creation to training, testing and deployment – whether this be for image recognition, classification of calls or other new frontiers birding.

Ronald T. Kneusel has been working with machine learning in industry since 2003 and completed a PhD in artificial intelligence at the University of Colorado, Boulder, in 2016. Ron lives in Colorado, which is a great place to foster his interest in birding. Ron’s other AI books include: How AI Works (2023), Practical Deep Learning (2nd edn, 2024), and Math for Deep Learning (2021).

Introduction



1. AI in a Nutshell 1.1 Defining AI 1.2 A Brief History of AI 1.3 Neural Networks 1.4 Datasets, Training and Testing



2. The Process 2.1 Data Collection 2.2 Data Preprocessing 2.3 Data Splitting and Augmentation 2.4 Architecture Selection and Training 2.5 Using the Validation Set 2.6 Final Testing and Deployment



3. Configuring the Desktop Environment 3.1 Introducing the Toolkits 3.2 Configuring Linux 3.3 Configuring macOS 3.4 Configuring Windows 



4. Building a Bird Dataset 4.1 Planning, Acquiring and Preprocessing 4.2 Building Train and Test Sets 4.3 Initial Testing 4.4 Reviewing the Code 4.5 Discussion



5. Exploring the Bird6 Dataset 5.1 Exploring Hyperparameters 5.2 Data Augmentation 5.3 Decision Thresholds 5.4 Ensembling 5.5 Discussion



6. Using Pretrained Models 6.1 Understanding Transfer Learning and Fine Tuning 6.2 Using Birds 25 6.3 Using ResNet-50 and MobileNet 6.4 Using CLIP 6.5 Discussion



7. Generic Bird Classifiers 7.1 North American Bird Features 7.2 Using NA Bird Features 7.3 Understanding the Models 7.4 Generic Images and Text 7.5 Discussion 



8. Detection 8.1 The Detection Hierarchy 8.2 Experiment: CLIP Embeddings 8.3 Experiment: Fully Convolutional Networks 8.4 Discussion



9. Classifying Audio 9.1 Sonograms 9.2 A CLIP-tastrophe 9.3 A Transfer Learning Exercise 9.4 Preparing the BirdCLEF Dataset 9.5 Training BirdCLEF from Scratch 9.6 BirdCLEF Transfer Learning 9.7 BirdCLEF Fine-Tuning 9.8 Discussion 



10. Open Source Birding with AI 10.1 Merlin 10.2 eBird 10.3 BirdNET



11. Going Further 11.1 Topics for Further Study 11.2 Recommended Books 11.3 Online Resources and Communities 11.4 The Future of Birding with AI 



Glossary 

Index 

Erscheinungsdatum
Reihe/Serie Data in the Wild
Zusatzinfo 41 Figures
Verlagsort Exeter
Sprache englisch
Maße 170 x 244 mm
Gewicht 385 g
Themenwelt Mathematik / Informatik Informatik Datenbanken
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Naturwissenschaften Biologie Zoologie
ISBN-10 1-78427-602-2 / 1784276022
ISBN-13 978-1-78427-602-7 / 9781784276027
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
die materielle Wahrheit hinter den neuen Datenimperien

von Kate Crawford

Buch | Hardcover (2024)
C.H.Beck (Verlag)
CHF 44,75
Künstliche Intelligenz, Macht und das größte Dilemma des 21. …

von Mustafa Suleyman; Michael Bhaskar

Buch | Softcover (2025)
C.H.Beck (Verlag)
CHF 25,20