Deep Learning in Quantitative Trading
Seiten
2025
Cambridge University Press (Verlag)
978-1-009-70711-4 (ISBN)
Cambridge University Press (Verlag)
978-1-009-70711-4 (ISBN)
This Element provides a comprehensive guide to deep learning in quantitative trading, merging foundational theory with hands-on applications. It is organized into two parts. The first part introduces the fundamentals of financial time-series and supervised learning, exploring various network architectures, from feedforward to state-of-the-art. To ensure robustness and mitigate overfitting on complex real-world data, a complete workflow is presented, from initial data analysis to cross-validation techniques tailored to financial data. Building on this, the second part applies deep learning methods to a range of financial tasks. The authors demonstrate how deep learning models can enhance both time-series and cross-sectional momentum trading strategies, generate predictive signals, and be formulated as an end-to-end framework for portfolio optimization. Applications include a mixture of data from daily data to high-frequency microstructure data for a variety of asset classes. Throughout, they include illustrative code examples and provide a dedicated GitHub repository with detailed implementations.
Preface; 1. Introduction; Part I. Foundations: 2. Fundamentals of Financial Time-Series; 3. Supervised Learning and Canonical Networks; 4. The Model Training Workflow; Part II. Applications: 5. Enhancing Classical Quantitative Trading Strategies with Deep Learning; 6. Deep Learning for Risk Management and Portfolio Optimization; 7. Applications to Market Microstructure and High-Frequency Data; 8. Conclusions; List of Acronyms; Appendix A: Different Asset Classes; Appendix B: Access to Market Data; Appendix C: Investment Performance Metrics; Appendix D: Code Scripts.
| Erscheinungsdatum | 21.10.2025 |
|---|---|
| Reihe/Serie | Elements in Quantitative Finance |
| Zusatzinfo | Worked examples or Exercises |
| Verlagsort | Cambridge |
| Sprache | englisch |
| Gewicht | 307 g |
| Themenwelt | Mathematik / Informatik ► Informatik |
| Wirtschaft ► Betriebswirtschaft / Management ► Finanzierung | |
| ISBN-10 | 1-009-70711-6 / 1009707116 |
| ISBN-13 | 978-1-009-70711-4 / 9781009707114 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Allgemeines Steuerrecht, Abgabenordnung, Umsatzsteuer
Buch | Softcover (2025)
Springer Gabler (Verlag)
CHF 39,20
Einkommensteuer, Körperschaftsteuer, Gewerbesteuer, Bewertungsgesetz …
Buch | Softcover (2025)
Springer Gabler (Verlag)
CHF 39,20
Allgemeines Steuerrecht, Abgabenordnung, Umsatzsteuer
Buch | Softcover (2024)
Springer Gabler (Verlag)
CHF 39,20