Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Introduction to Online Control - Elad Hazan, Karan Singh

Introduction to Online Control

, (Autoren)

Buch | Hardcover
171 Seiten
2025
Cambridge University Press (Verlag)
978-1-009-49966-8 (ISBN)
CHF 83,80 inkl. MwSt
  • Noch nicht erschienen (ca. November 2026)
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
This book introduces readers with a background in linear algebra to a robust new framework for developing control algorithms. Rather than making probabilistic assumptions about the world, nonstochastic online control provides efficient gradient-based algorithms that can operate in the presence of uncertainty and unforeseeable disturbances.
This tutorial guide introduces online nonstochastic control, an emerging paradigm in control of dynamical systems and differentiable reinforcement learning that applies techniques from online convex optimization and convex relaxations to obtain new methods with provable guarantees for classical settings in optimal and robust control. In optimal control, robust control, and other control methodologies that assume stochastic noise, the goal is to perform comparably to an offline optimal strategy. In online control, both cost functions and perturbations from the assumed dynamical model are chosen by an adversary. Thus, the optimal policy is not defined a priori and the goal is to attain low regret against the best policy in hindsight from a benchmark class of policies. The resulting methods are based on iterative mathematical optimization algorithms and are accompanied by finite-time regret and computational complexity guarantees. This book is ideal for graduate students and researchers interested in bridging classical control theory and modern machine learning.

Elad Hazan is Professor of Computer Science at Princeton University. His research focuses on the design and analysis of algorithms for basic problems in machine learning and optimization. He is a pioneer of online nonstochastic control theory. Karan Singh is Assistant Professor of Operations Research at Carnegie Mellon University, and has previously worked at Google Brain and Microsoft Research. He works on the foundations of machine learning, control, and reinforcement learning.

Symbols; Part I. Background in Control and RL: 1. Introduction; 2. Dynamical systems; 3. Markov decision processes; 4. Linear dynamical systems; 5. Optimal control of linear dynamical systems; Part II. Basics of Online Control: 6. Regret in control; 7. Online nonstochastic control; 8. Online nonstochastic system identification; Part III. Learning and Filtering: 9. Learning in unknown linear dynamical systems; 10. Kalman filtering; 11. Spectral filtering; Part IV. Online Control with Partial Observation: 12. Policy classes for partially observed systems; 13. Online nonstochastic control with partial observation; References; Index.

Erscheint lt. Verlag 1.11.2026
Zusatzinfo Worked examples or Exercises
Verlagsort Cambridge
Sprache englisch
Gewicht 500 g
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik Angewandte Mathematik
Mathematik / Informatik Mathematik Finanz- / Wirtschaftsmathematik
ISBN-10 1-009-49966-1 / 1009499661
ISBN-13 978-1-009-49966-8 / 9781009499668
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Eine kurze Geschichte der Informationsnetzwerke von der Steinzeit bis …

von Yuval Noah Harari

Buch | Hardcover (2024)
Penguin (Verlag)
CHF 39,95
die materielle Wahrheit hinter den neuen Datenimperien

von Kate Crawford

Buch | Hardcover (2024)
C.H.Beck (Verlag)
CHF 44,75