Morse Homology with Differential Graded Coefficients (eBook)
XI, 229 Seiten
Birkhäuser Basel (Verlag)
978-3-031-88020-9 (ISBN)
The key geometric objects underlying Morse homology are the moduli spaces of connecting gradient trajectories between critical points of a Morse function. The basic question in this context is the following: How much of the topology of the underlying manifold is visible using moduli spaces of connecting trajectories? The answer provided by “classical” Morse homology as developed over the last 35 years is that the moduli spaces of isolated connecting gradient trajectories recover the chain homotopy type of the singular chain complex.
The purpose of this monograph is to extend this further: the fundamental classes of the compactified moduli spaces of connecting gradient trajectories allow the construction of a twisting cocycle akin to Brown’s universal twisting cocycle. As a consequence, the authors define (and compute) Morse homology with coefficients in any differential graded (DG) local system. As particular cases of their construction, they retrieve the singular homology of the total space of Hurewicz fibrations and the usual (Morse) homology with local coefficients. A full theory of Morse homology with DG coefficients is developed, featuring continuation maps, invariance, functoriality, and duality. Beyond applications to topology, this is intended to serve as a blueprint for analogous constructions in Floer theory.
The new material and methods presented in the text will be of interest to a broad range of researchers in topology and symplectic topology. At the same time, the authors are particularly careful to give gentle introductions to the main topics and have structured the text so that it can be easily read at various degrees of detail. As such, the book should already be accessible and of interest to graduate students with a general interest in algebra and topology.
| Erscheint lt. Verlag | 29.5.2025 |
|---|---|
| Reihe/Serie | Progress in Mathematics |
| Zusatzinfo | XI, 229 p. 2 illus. in color. |
| Sprache | englisch |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Geometrie / Topologie |
| Schlagworte | fibrations • Floer homotopy theory • Floer theory • Leray-Serre spectral sequence • Morse Homology • Morse homology with DG coefficients • Morse Theory • Poincaré duality • Twisting cocycle |
| ISBN-10 | 3-031-88020-X / 303188020X |
| ISBN-13 | 978-3-031-88020-9 / 9783031880209 |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich