Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Advanced Machine Learning for Cyber-Attack Detection in IoT Networks -

Advanced Machine Learning for Cyber-Attack Detection in IoT Networks (eBook)

eBook Download: EPUB
2025 | 1. Auflage
300 Seiten
Elsevier Science (Verlag)
978-0-443-29033-6 (ISBN)
Systemvoraussetzungen
187,56 inkl. MwSt
(CHF 179,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Advanced Machine Learning for Cyber-Attack Detection in IoT Networks analyzes diverse machine learning techniques, including supervised, unsupervised, reinforcement, and deep learning, along with their applications in detecting and preventing cyberattacks in future IoT systems. Chapters investigate the key challenges and vulnerabilities found in IoT security, how to handle challenges in data collection and pre-processing specific to IoT environments, as well as what metrics to consider for evaluating the performance of machine learning models. Other sections look at the training, validation, and evaluation of supervised learning models and present case studies and examples that demonstrate the application of supervised learning in IoT security. - Presents a comprehensive overview of research on IoT security threats and potential attacks - Investigates machine learning techniques, their mathematical foundations, and their application in cybersecurity - Presents metrics for evaluating the performance of machine learning models as well as benchmark datasets and evaluation frameworks for assessing IoT systems
Advanced Machine Learning for Cyber-Attack Detection in IoT Networks analyzes diverse machine learning techniques, including supervised, unsupervised, reinforcement, and deep learning, along with their applications in detecting and preventing cyberattacks in future IoT systems. Chapters investigate the key challenges and vulnerabilities found in IoT security, how to handle challenges in data collection and pre-processing specific to IoT environments, as well as what metrics to consider for evaluating the performance of machine learning models. Other sections look at the training, validation, and evaluation of supervised learning models and present case studies and examples that demonstrate the application of supervised learning in IoT security. - Presents a comprehensive overview of research on IoT security threats and potential attacks- Investigates machine learning techniques, their mathematical foundations, and their application in cybersecurity- Presents metrics for evaluating the performance of machine learning models as well as benchmark datasets and evaluation frameworks for assessing IoT systems
Erscheint lt. Verlag 2.6.2025
Sprache englisch
Themenwelt Informatik Theorie / Studium Kryptologie
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
ISBN-10 0-443-29033-4 / 0443290334
ISBN-13 978-0-443-29033-6 / 9780443290336
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Kryptographie und Geschichte

von Wolfgang Killmann; Winfried Stephan

eBook Download (2024)
Springer Berlin Heidelberg (Verlag)
CHF 41,95