Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Various Methods for the Analysis of PDEs -

Various Methods for the Analysis of PDEs

Buch | Hardcover
101 Seiten
2026
Springer Nature Switzerland AG (Verlag)
978-981-96-9163-0 (ISBN)
CHF 299,55 inkl. MwSt
  • Titel nicht im Sortiment
  • Artikel merken
This book presents the proceedings of the Minisymposium “Various Methods for the Analysis of PDEs” held at the International Congress on Industrial and Applied Mathematics (ICIAM) 2023. This volume brings together a diverse group of researchers, practitioners, and experts who have shared their latest developments and innovations in the field of Partial Differential Equations (PDEs).


The papers included in this volume reflect the high quality and breadth of research presented at the session. Covering a wide range of topics, this collection showcases the dynamic and interdisciplinary nature of the Analysis of PDEs. Each contribution has undergone a rigorous peer-review process to ensure the highest standards of academic excellence.


Key topics include:




Interpolation Inequalities: Novel contributions to the field, including stability results for the Sobolev inequality and the Gaussian logarithmic Sobolev inequality with explicit and dimensionally sharp constants.
Strichartz Estimates: New estimates specifically for orthonormal families of initial data, extending traditional Strichartz estimates to provide deeper insights into the behavior of solutions to dispersive equations, including the wave equation, Klein-Gordon equation, and fractional Schrödinger equations.
Asymptotic Behavior: Detailed analysis of the asymptotic behavior for the massive Maxwell–Klein–Gordon system under the Lorenz gauge condition in dimension (1+4), including scattering results.
Time-Dependent Free Schrödinger Operator: A new characterization of this operator, highlighting its unique invariance under the Galilei group in Euclidean space-time.
Lifespan Estimates: Analysis of the lifespan of solutions to the damped wave equation, with decay estimates for particular initial data in the case of nonlinearity with subcritical Fujita exponent.


This book aims to provide readers with a profound and cohesive understanding of the current state of splitting optimization while inspiring future research and innovation in this dynamic field.


 

Tohru Ozawa is a professor at Waseda Univerisity. Vladimir Simeonov is a professor at University of Pisa.

Chapter 1 Decay of Solution to 1D Subcritical Damped Wave Equation Under Some Initial Condition.-Chapter 2 Asymptotic Behavior for the Massive Maxwell-Klein-Gordon System Under the Lorenz Gauge Condition In Dimension (1+4).- Chapter 3 A Short Review on Improvements And Stability For Some Interpolation Inequalities.- Chapter 4 Orthonormal Strichartz Estimates for the Wave Equation and Related Geometric Inequalities.- Chapter 5 Characterization of the Time-Dependent Free Schr¨Odinger Operator by the Galilei Invariance.

Erscheinungsdatum
Reihe/Serie ICIAM2023 Springer Series
Zusatzinfo 1 Illustrations, black and white
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Mathematik Analysis
Schlagworte Damped wave equation • Maxwell--Klein--Gordon system • Schroedinger Operator • Stability results for the Sobolev inequality • Strichartz Estimates for orthonormal basis
ISBN-10 981-96-9163-X / 981969163X
ISBN-13 978-981-96-9163-0 / 9789819691630
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Tilo Arens; Frank Hettlich; Christian Karpfinger …

Buch | Hardcover (2022)
Springer Spektrum (Verlag)
CHF 118,95