Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Robust Explainable AI (eBook)

eBook Download: PDF
2025 | 1. Auflage
XII, 71 Seiten
Springer-Verlag
978-3-031-89022-2 (ISBN)

Lese- und Medienproben

Robust Explainable AI -  Francesco Leofante,  Matthew Wicker
Systemvoraussetzungen
48,14 inkl. MwSt
(CHF 46,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

The area of Explainable Artificial Intelligence (XAI) is concerned with providing methods and tools to improve the interpretability of black-box learning models. While several approaches exist to generate explanations, they are often lacking robustness, e.g., they may produce completely different explanations for similar events. This phenomenon has troubling implications, as lack of robustness indicates that explanations are not capturing the underlying decision-making process of a model and thus cannot be trusted.


This book aims at introducing Robust Explainable AI, a rapidly growing field whose focus is to ensure that explanations for machine learning models adhere to the highest robustness standards. We will introduce the most important concepts, methodologies, and results in the field, with a particular focus on techniques developed for feature attribution methods and counterfactual explanations for deep neural networks.


As prerequisites, a certain familiarity with neural networks and approaches within XAI is desirable but not mandatory. The book is designed to be self-contained, and relevant concepts will be introduced when needed, together with examples to ensure a successful learning experience.



Erscheint lt. Verlag 24.5.2025
Reihe/Serie SpringerBriefs in Intelligent Systems
Zusatzinfo XII, 71 p. 20 illus., 17 illus. in color.
Sprache englisch
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Informatik Web / Internet
Mathematik / Informatik Mathematik Statistik
Schlagworte adversarial robustness • Counterfactual Explanations • deep neural networks • Explainable AI • Fairness • Feature Attribution • privacy • Saliency-Based Explanations • trustworthy AI • XAI
ISBN-10 3-031-89022-1 / 3031890221
ISBN-13 978-3-031-89022-2 / 9783031890222
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Die Grundlage der Digitalisierung

von Knut Hildebrand; Michael Mielke; Marcus Gebauer

eBook Download (2025)
Springer Fachmedien Wiesbaden (Verlag)
CHF 29,30
Die materielle Wahrheit hinter den neuen Datenimperien

von Kate Crawford

eBook Download (2024)
C.H.Beck (Verlag)
CHF 17,55