Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Statistics Every Programmer Needs - Gary Sutton

Statistics Every Programmer Needs

(Autor)

Buch | Softcover
448 Seiten
2025
Manning Publications (Verlag)
978-1-63343-605-3 (ISBN)
CHF 104,70 inkl. MwSt
Every high-profile data breach underlines the need for cybersecurity. A proper understanding of threats, vulnerabilities, and most-likely attacks empowers you to make better decisions and mitigate risks.
Still trusting gut feel over data? Many professionals make decisions based on instinct rather than evidence because they lack the tools to interpret numbers with confidence. In today’s data-driven world, uncertainty and bias can easily lead to flawed conclusions. What if you could learn how to analyze data systematically and defend every decision with solid, reproducible evidence? By mastering Python-powered statistics, you can move beyond guesswork and make choices grounded in mathematical rigor and real-world insights.



Foundational techniques: Build confidence with means, variance, distributions, and hypothesis tests.



Predictive modeling: Forecast sales, prices, or risk using regression and simulation.



Decision optimization: Choose best-fit strategies under constraints and uncertainty.



Validation workflows: Spot bias, confirm assumptions, and report results with statistical rigor.



Python notebooks: Access reproducible analysis you can adapt to your own projects.

Statistics Every Programmer Needs by analytics leader Gary Sutton delivers a practical guide with copy-and-run Python code.

Each chapter introduces core theory, then jumps straight into the Python data ecosystem—pandas, NumPy, SciPy, and more. Real business scenarios, from quality control to market prediction, show exactly when and why to apply each statistical technique.

After finishing, you will analyze uncertainty systematically, communicate insights persuasively, and back every recommendation with numbers that stand up to scrutiny. Your work becomes structured, reproducible, and credible.

Ideal for analysts, managers, and self-taught developers who need reliable, decision-ready insights fast.

Gary Sutton is a business intelligence leader known for turning raw data into clear, actionable strategy. With decades guiding Fortune-level analytics teams, Gary brings an engaging, example-rich style to every page. He distills advanced statistical expertise into step-by-step Python workflows that let readers act decisively.

1 LAYING THE GROUNDWORK

2 EXPLORING PROBABILITY AND COUNTING

3 EXPLORING PROBABILITY DISTRIBUTIONS AND CONDITIONAL PROBABILITIES

4 FITTING A LINEAR REGRESSION

5 FITTING A LOGISTIC REGRESSION

6 FITTING A DECISION TREE AND A RANDOM FOREST

7 FITTING TIME SERIES MODELS

8 TRANSFORMING DATA INTO DECISIONS WITH LINEAR PROGRAMMING

9 RUNNING MONTE CARLO SIMULATIONS

10 BUILDING AND PLOTTING A DECISION TREE

11 PREDICTING FUTURE STATES WITH MARKOV ANALYSIS

12 EXAMINING AND TESTING NATURALLY OCCURRING NUMBER SEQUENCES

13 MANAGING PROJECTS

14 VISUALIZING QUALITY CONTROL

Erscheinungsdatum
Verlagsort New York
Sprache englisch
Maße 189 x 235 mm
Gewicht 812 g
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Mathematik / Informatik Informatik Programmiersprachen / -werkzeuge
Mathematik / Informatik Mathematik Computerprogramme / Computeralgebra
Mathematik / Informatik Mathematik Statistik
ISBN-10 1-63343-605-5 / 1633436055
ISBN-13 978-1-63343-605-3 / 9781633436053
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
eine Einführung mit Python, Scikit-Learn und TensorFlow

von Oliver Zeigermann; Chi Nhan Nguyen

Buch | Softcover (2024)
O'Reilly (Verlag)
CHF 27,85
Von den Grundlagen bis zum Produktiveinsatz

von Anatoly Zelenin; Alexander Kropp

Buch (2025)
Hanser (Verlag)
CHF 69,95