Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Bayesian Machine Learning in Geotechnical Site Characterization - Jianye Ching

Bayesian Machine Learning in Geotechnical Site Characterization

(Autor)

Buch | Softcover
176 Seiten
2025
CRC Press (Verlag)
978-1-032-31443-3 (ISBN)
CHF 119,95 inkl. MwSt
  • Lieferbar (Termin unbekannt)
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
This presents recent advancements in probabilistic geotechnical site characterization. It reviews probability theories and models for cross correlation and spatial correlation, and presents methods for Bayesian parameter estimation and prediction. Use of these methods is demonstrated with geotechnical site characterization examples.
Bayesian data analysis and modelling linked with machine learning offers a new tool for handling geotechnical data. This book presents recent advancements made by the author in the area of probabilistic geotechnical site characterization.

Two types of correlation play central roles in geotechnical site characterization: cross-correlation among soil properties and spatial-correlation in the underground space. The book starts with the introduction of Bayesian notion of probability “degree of belief”, showing that well-known probability axioms can be obtained by Boolean logic and the definition of plausibility function without the use of the notion “relative frequency”. It then reviews probability theories and useful probability models for cross-correlation and spatial correlation. Methods for Bayesian parameter estimation and prediction are also presented, and the use of these methods demonstrated with geotechnical site characterization examples.

Bayesian Machine Learning in Geotechnical Site Characterization suits consulting engineers and graduate students in the area.

Jianye Ching is Distinguished Professor at National Taiwan University and Convener of the Civil & Hydraulic Engineering Program of the Ministry of Science and Technology of Taiwan. He is Chair of ISSMGE‘s TC304 (risk), Chair of Geotechnical Safety Network (GEOSNet), and Managing Editor of the journal Georisk.

1. Bayesian Approach. 2. Review of Probability and Models. 3. Bayesian Parameter Estimation and Prediction. 4. Geotechnical Data and Bayesian Modeling. 5. Full-scale Real Case Study.

Erscheinungsdatum
Reihe/Serie Challenges in Geotechnical and Rock Engineering
Zusatzinfo 14 Tables, black and white; 78 Line drawings, black and white; 78 Illustrations, black and white
Verlagsort London
Sprache englisch
Maße 156 x 234 mm
Themenwelt Mathematik / Informatik Mathematik
Naturwissenschaften Biologie Ökologie / Naturschutz
Technik Bauwesen
ISBN-10 1-032-31443-5 / 1032314435
ISBN-13 978-1-032-31443-3 / 9781032314433
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Gewinnung - Aufbereitung - Speicherung - Verteilung

von Frank Hoffmann; Stefan Grube

Buch | Softcover (2022)
Springer Vieweg (Verlag)
CHF 55,95
das Leben unter unseren Füßen

von Nicole Ottawa; Oliver Meckes; Veronika Straaß …

Buch | Hardcover (2024)
Dölling und Galitz (Verlag)
CHF 44,90