Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Understanding Complex Datasets - David Skillicorn

Understanding Complex Datasets

Data Mining with Matrix Decompositions
Buch | Hardcover
266 Seiten
2007
Chapman & Hall/CRC (Verlag)
978-1-58488-832-1 (ISBN)
CHF 157,10 inkl. MwSt
Focusing on data mining mechanics and applications, this book explores some of the most common matrix decompositions, including singular value, semidiscrete, independent component analysis, non-negative matrix factorization, and tensors. It also discusses several important theoretical and algorithmic problems of matrix decompositions.
Making obscure knowledge about matrix decompositions widely available, Understanding Complex Datasets: Data Mining with Matrix Decompositions discusses the most common matrix decompositions and shows how they can be used to analyze large datasets in a broad range of application areas. Without having to understand every mathematical detail, the book helps you determine which matrix is appropriate for your dataset and what the results mean.

Explaining the effectiveness of matrices as data analysis tools, the book illustrates the ability of matrix decompositions to provide more powerful analyses and to produce cleaner data than more mainstream techniques. The author explores the deep connections between matrix decompositions and structures within graphs, relating the PageRank algorithm of Google's search engine to singular value decomposition. He also covers dimensionality reduction, collaborative filtering, clustering, and spectral analysis. With numerous figures and examples, the book shows how matrix decompositions can be used to find documents on the Internet, look for deeply buried mineral deposits without drilling, explore the structure of proteins, detect suspicious emails or cell phone calls, and more.

Concentrating on data mining mechanics and applications, this resource helps you model large, complex datasets and investigate connections between standard data mining techniques and matrix decompositions.

Queen's University, Kingston, Ontario, Canada

Data Mining. Matrix Decompositions. Singular Value Decomposition (SVD). Graph Analysis. SemiDiscrete Decomposition (SDD). Using SVD and SDD Together. Independent Component Analysis (ICA). Non-Negative Matrix Factorization (NNMF). Tensors. Conclusion. Appendix. Bibliography. Index.

Erscheint lt. Verlag 1.7.2007
Reihe/Serie Chapman & Hall/CRC Data Mining and Knowledge Discovery Series
Zusatzinfo 84 Illustrations, black and white
Sprache englisch
Maße 156 x 234 mm
Gewicht 650 g
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Mathematik / Informatik Informatik Theorie / Studium
ISBN-10 1-58488-832-6 / 1584888326
ISBN-13 978-1-58488-832-1 / 9781584888321
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
eine Einführung mit Python, Scikit-Learn und TensorFlow

von Oliver Zeigermann; Chi Nhan Nguyen

Buch | Softcover (2024)
O'Reilly (Verlag)
CHF 27,85
Von den Grundlagen bis zum Produktiveinsatz

von Anatoly Zelenin; Alexander Kropp

Buch (2025)
Hanser (Verlag)
CHF 69,95