Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Measure Theory and Advanced Probability (eBook)

eBook Download: EPUB
2025
166 Seiten
Royal Co. (Verlag)
978-3-384-61102-4 (ISBN)

Lese- und Medienproben

Measure Theory and Advanced Probability - Azhar Ul Haque Sario
Systemvoraussetzungen
6,99 inkl. MwSt
(CHF 6,80)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Dive into the world of Measure Theory and Advanced Probability with this comprehensive guide!


 


This book, Measure Theory and Advanced Probability, is your ticket to mastering two pillars of modern mathematics. It's a 15-chapter journey designed for scholars, professionals, and academics eager to dig deep. We start with the historical shift from Riemann to Lebesgue integration, exploring why Riemann fell short for complex functions. You'll meet σ-algebras, the building blocks of measurable spaces, and learn how measures quantify abstract sets. The book constructs Lebesgue's integral, showing its edge over Riemann's approach. It formalizes probability through Kolmogorov's axioms, defining random variables and their distributions. Expectation, moments, and inequalities like Markov's and Jensen's get clear explanations. We dive into Lp spaces, convergence modes, and characteristic functions, crucial for limit theorems. Conditional expectation and martingales wrap up the book, with real-world applications in finance and statistics. Each chapter is packed with rigorous proofs, vivid examples, and subtopics like Carathéodory's Theorem or the Borel hierarchy. From pathological functions to stochastic processes, it's a complete toolkit for understanding probability's mathematical roots.


 


What sets this book apart? It's not just another dense textbook recycling old ideas. Its competitive edge lies in its clarity, depth, and research-backed approach. Unlike others that skim over tough concepts or assume too much, this book breaks down every idea-like σ-finiteness or martingale convergence-with intuitive examples and historical context. It bridges theory and application, showing how measure theory powers modern probability in fields like Bayesian statistics or financial modeling. The structure, with independent subtopics, lets you jump in anywhere, making it flexible for self-study or teaching. Other books might overwhelm with jargon or lack practical insights; this one balances rigor with accessibility, offering a fresh perspective that's both scholarly and engaging. It's built to spark curiosity and earn recognition in academic circles, filling gaps left by less comprehensive texts.


 


The journey begins with the limitations of Riemann integration, where 'pathological' functions like Dirichlet's exposed cracks in the system. Lebesgue's vision-partitioning a function's range-revolutionized integration, and Chapter 1 lays this out with historical flair. Chapter 2 introduces σ-algebras, from Borel sets to filtrations, setting the stage for measurable spaces. You'll see measures defined axiomatically in Chapter 3, with examples like Lebesgue and Dirac measures. Chapter 4's Carathéodory's Theorem shows how to build measures from scratch. Measurable functions, the heart of integration, shine in Chapter 5, while Chapter 6 constructs the Lebesgue integral, comparing it to Riemann's. Probability gets formalized in Chapter 7, with random variables and distributions in Chapter 8. Expectation and inequalities dominate Chapter 9, followed by Lp spaces in Chapter 10. Convergence modes, characteristic functions, conditional expectation, and martingales round out the later chapters, each tying theory to practice.


 


Copyright Disclaimer: This book is independently produced by the author and is not affiliated with any educational board or institution. All references to existing concepts, theorems, or frameworks are made under nominative fair use, with full respect for intellectual property rights.

Erscheint lt. Verlag 16.5.2025
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Statistik
Schlagworte Advanced Probability • Characteristic Functions • Lebesgue integration • Martingales • measure theory • random variables • σ-Algebras
ISBN-10 3-384-61102-0 / 3384611020
ISBN-13 978-3-384-61102-4 / 9783384611024
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Ohne DRM)

Digital Rights Management: ohne DRM
Dieses eBook enthält kein DRM oder Kopier­schutz. Eine Weiter­gabe an Dritte ist jedoch rechtlich nicht zulässig, weil Sie beim Kauf nur die Rechte an der persön­lichen Nutzung erwerben.

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür die kostenlose Software Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich