The Monodromy Group (eBook)
XVI, 687 Seiten
Birkhäuser Basel (Verlag)
978-3-031-91270-2 (ISBN)
This book presents the monodromy group, underlining the unifying role it plays in a variety of theories and mathematical areas. In singularity theory and algebraic geometry, the monodromy group is embodied in the Picard-Lefschetz formula and the Picard-Fuchs equations. It has applications in the weakened 16th Hilbert problem and in mixed Hodge structures. In the theory of systems of linear differential equations, one has the Riemann-Hilbert problem, the Stokes phenomena and the hypergeometric functions with their multidimensional generalizations. In the theory of homomorphic foliations, there appear the Ecalle-Voronin-Martinet-Ramis moduli. Moreover, there is a deep connection of monodromy theory with Galois theory of differential equations and algebraic functions.
The material is addressed to a wide audience, ranging from specialists in the theory of ordinary differential equations to algebraic geometers. Readers will quickly get introduced to modern and vital mathematical theories, such as singularity theory, analytic theory of ordinary differential equations, holomorphic foliations, Galois theory, and parts of algebraic geometry, without searching in vast literature.
This second edition has been enlarged by several sections, presenting new results appeared since the first edition.
| Erscheint lt. Verlag | 10.5.2025 |
|---|---|
| Reihe/Serie | Monografie Matematyczne |
| Zusatzinfo | XVI, 687 p. |
| Sprache | englisch |
| Themenwelt | Mathematik / Informatik ► Mathematik |
| Schlagworte | Algebra • Algebraic Geometry • algebraic topology • Analytic Functions • Dynamical Systems • Foliations • Galois Theory • Hodge structures • Monodromy • Monodromy group • Morse Theory • Ordinary differential equations • singularity theory |
| ISBN-10 | 3-031-91270-5 / 3031912705 |
| ISBN-13 | 978-3-031-91270-2 / 9783031912702 |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich