Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Knowledge Graph-Based Methods for Automated Driving -

Knowledge Graph-Based Methods for Automated Driving (eBook)

eBook Download: EPUB
2025 | 1. Auflage
400 Seiten
Elsevier Science (Verlag)
978-0-443-30041-7 (ISBN)
Systemvoraussetzungen
227,78 inkl. MwSt
(CHF 219,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
The global race to develop and deploy automated vehicles is still hindered by significant challenges, with the related complexities requiring multidisciplinary research approaches. Knowledge Graph-Based Methods for Automated Driving offers sought-after, specialized know-how for a wide range of readers both in academia and industry on the use of graphs as knowledge representation techniques which, compared to other relational models, provide a number of advantages for data-driven applications like automated driving tasks. The machine learning pipeline presented in this volume incorporates a variety of auxiliary information, including logic rules, ontology-informed workflows, simulation outcomes, differential equations, and human input, with the resulting operational framework being more reliable, secure, efficient as well as sustainable. Case studies and other practical discussions exemplify these methods' promising and exciting prospects for the maturation of scalable solutions with potential to transform transport and logistics worldwide. - Systematically covers knowledge graphs for automated driving processes - Includes real-life case studies, facilitating an understanding of current challenges - Analyzes the impact of various technological aspects related to automation across a range of transport modes, networks, and infrastructures
The global race to develop and deploy automated vehicles is still hindered by significant challenges, with the related complexities requiring multidisciplinary research approaches. Knowledge Graph-Based Methods for Automated Driving offers sought-after, specialized know-how for a wide range of readers both in academia and industry on the use of graphs as knowledge representation techniques which, compared to other relational models, provide a number of advantages for data-driven applications like automated driving tasks. The machine learning pipeline presented in this volume incorporates a variety of auxiliary information, including logic rules, ontology-informed workflows, simulation outcomes, differential equations, and human input, with the resulting operational framework being more reliable, secure, efficient as well as sustainable. Case studies and other practical discussions exemplify these methods' promising and exciting prospects for the maturation of scalable solutions with potential to transform transport and logistics worldwide. - Systematically covers knowledge graphs for automated driving processes- Includes real-life case studies, facilitating an understanding of current challenges- Analyzes the impact of various technological aspects related to automation across a range of transport modes, networks, and infrastructures
Erscheint lt. Verlag 11.4.2025
Sprache englisch
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Technik Fahrzeugbau / Schiffbau
ISBN-10 0-443-30041-0 / 0443300410
ISBN-13 978-0-443-30041-7 / 9780443300417
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Die Grundlage der Digitalisierung

von Knut Hildebrand; Michael Mielke; Marcus Gebauer

eBook Download (2025)
Springer Fachmedien Wiesbaden (Verlag)
CHF 29,30
Die materielle Wahrheit hinter den neuen Datenimperien

von Kate Crawford

eBook Download (2024)
C.H.Beck (Verlag)
CHF 17,55