Data Science, Classification, and Artificial Intelligence for Modeling Decision Making (eBook)
XII, 190 Seiten
Springer Nature Switzerland (Verlag)
978-3-031-85870-3 (ISBN)
This book gathers selected and peer-reviewed contributions presented at the 18th Conference of the International Federation of Classification Societies (IFCS 2024), held in San José, Costa Rica, July 15–19, 2024. Covering a wide range of topics, it describes modern methods and real-world applications in data science, classification, and artificial intelligence related to modeling decision making.
Numerous novel techniques and innovative applications are investigated, such as anomaly detection in public procurement processes, multivariate functional data clustering, air pollution prediction, benchmark generation for probabilistic planning, recommendation systems based on symbolic data analysis, and methods for clustering mixed-type data. Advanced statistical concepts are explored, including Vapnik-Chervonenkis dimensionality, Riemannian statistics, hypothesis testing for interval-valued data, and mixed models. Furthermore, machine learning techniques are applied to predict soil bacterial and fungal communities, classify electoral behavior and political competition, and assess corrosion degradation in mining pipelines.
The diversity of topics discussed in this collection reflects the ongoing advancement and interdisciplinary nature of statistical and data science research, as well as its application across various fields and sectors. These studies contribute to the development of robust methodologies and efficient computational tools to address complex challenges in the era of big data.
The book is intended for researchers and practitioners seeking the latest developments and applications in the field of data science and classification.
| Erscheint lt. Verlag | 19.4.2025 |
|---|---|
| Reihe/Serie | Studies in Classification, Data Analysis, and Knowledge Organization |
| Zusatzinfo | XII, 190 p. 42 illus., 36 illus. in color. |
| Sprache | englisch |
| Themenwelt | Mathematik / Informatik ► Informatik ► Datenbanken |
| Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
| Mathematik / Informatik ► Mathematik ► Statistik | |
| Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
| Schlagworte | classification • Clustering • Data Analysis • Data Science • machine learning • Statistical Learning |
| ISBN-10 | 3-031-85870-0 / 3031858700 |
| ISBN-13 | 978-3-031-85870-3 / 9783031858703 |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich