Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Data Clustering with Python - Guojun Gan

Data Clustering with Python

From Theory to Implementation

(Autor)

Buch | Hardcover
248 Seiten
2025
Chapman & Hall/CRC (Verlag)
978-1-032-97156-8 (ISBN)
CHF 139,60 inkl. MwSt
  • Versand in 10-20 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
Ideal for anyone interested in clustering algorithms, with no prior Python experience required.
Data clustering, an interdisciplinary field with diverse applications, has gained increasing popularity since its origins in the 1950s. Over the past six decades, researchers from various fields have proposed numerous clustering algorithms. In 2011, I wrote a book on implementing clustering algorithms in C++ using object-oriented programming. While C++ offers efficiency, its steep learning curve makes it less ideal for rapid prototyping. Since then, Python has surged in popularity, becoming the most widely used programming language since 2022. Its simplicity and extensive scientific libraries make it an excellent choice for implementing clustering algorithms.

Features:



Introduction to Python programming fundamentals
Overview of key concepts in data clustering
Implementation of popular clustering algorithms in Python
Practical examples of applying clustering algorithms to datasets
Access to associated Python code on GitHub

This book extends my previous work by implementing clustering algorithms in Python. Unlike the object-oriented approach in C++, this book uses a procedural programming style, as Python allows many clustering algorithms to be implemented concisely. The book is divided into two parts: the first introduces Python and key libraries like NumPy, Pandas, and Matplotlib, while the second covers clustering algorithms, including hierarchical and partitional methods. Each chapter includes theoretical explanations, Python implementations, and practical examples, with comparisons to scikit-learn where applicable.

This book is ideal for anyone interested in clustering algorithms, with no prior Python experience required. The complete source code is available at: https://github.com/ganml/dcpython.

Guojun Gan is an Associate Professor in the Department of Mathematics at the University of Connecticut, where he has been since August 2014. Prior to that, he worked at a large life insurance company in Toronto, Canada for six years and a hedge fund in Oakville, Canada for one year. He earned a BS degree from Jilin University, Changchun, China, in 2001 and MS and PhD degrees from York University, Toronto, Canada, in 2003 and 2007, respectively.

1. Python Programming 101. 2. The NumPy Library. 3. The Pandas Library. 4. The Matplotlib Library. 5. Introduction to Data Clustering. 6. Agglomerative Hierarchical Algorithms. 7. DIANA. 8. The k-means Algorithm. 9. The c-means Algorithm. 10. The k-prototypes Algorithm. 11. The Genetic k-modes Algorithm. 12. The FSC Algorithm. 13. The Gaussian Mixture Algorithm. 14 The KMTD Algorithm. 15. The Probability Propagation Algorithm. 16. A Spectral Clustering Algorithm. 17. A Mean-Shift Algorithm.

Erscheinungsdatum
Reihe/Serie Chapman & Hall/CRC The Python Series
Zusatzinfo 40 Line drawings, black and white; 40 Illustrations, black and white
Sprache englisch
Maße 156 x 234 mm
Gewicht 641 g
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Mathematik / Informatik Mathematik Computerprogramme / Computeralgebra
ISBN-10 1-032-97156-8 / 1032971568
ISBN-13 978-1-032-97156-8 / 9781032971568
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
eine Einführung mit Python, Scikit-Learn und TensorFlow

von Oliver Zeigermann; Chi Nhan Nguyen

Buch | Softcover (2024)
O'Reilly (Verlag)
CHF 27,85
Von den Grundlagen bis zum Produktiveinsatz

von Anatoly Zelenin; Alexander Kropp

Buch (2025)
Hanser (Verlag)
CHF 69,95