Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Neural Information Processing -

Neural Information Processing

31st International Conference, ICONIP 2024, Auckland, New Zealand, December 2–6, 2024, Proceedings, Part III
Buch | Softcover
416 Seiten
2025
Springer Nature Switzerland AG (Verlag)
978-981-96-6581-5 (ISBN)
CHF 109,95 inkl. MwSt
  • Versand in 10-20 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken

The eleven-volume set LNCS 15286-15296 constitutes the refereed proceedings of the 31st International Conference on Neural Information Processing, ICONIP 2024, held in Auckland, New Zealand, in December 2024.
The 318 regular papers presented in the proceedings set were carefully reviewed and selected from 1301 submissions. They focus on four main areas, namely: theory and algorithms; cognitive neurosciences; human-centered computing; and applications.

FreeFlow: A Unified Viewpoint on Diffusion Probabilistic Models via Optimal Transport and Fluid Mechanics.- Optimizing CNNs with Gram Schmidt Non-Iterative Learning for Image Recognition.- Improving Multilingual Speech Recognition with Tucker-compressed Mixture of LoRAs.- MetaFix: Semi-Supervised Model Agnostic Meta-Learning using Consistency Regularization.- Towards Private and Fair Machine Learning: Group-Specific Differentially Private Stochastic Gradient Descent with Threshold Optimization.- LogMoE: Optimizing Mixture of Experts for Log Anomaly Detection via Knowledge Distillation.- Cross-Domain Few-Shot Learning with Equiangular Embedding and Dynamic Adversarial Augmentation.- -Net: An Unsupervised Model for Online Graph Time-Series Denoising.- On Learnable Parameters of Optimal and Suboptimal Deep Learning Models.- Aero-engine Condition-Based Maintenance Planning Using  Reinforcement Learning.- Multi-Timescale Processing with Heterogeneous Assembly Echo StateNetworks.- ADERec: Adaptive Data Augmentation Sequence Recommendation Based on Dual Network Architecture.- Pruning neural network parameters using recurrent neural networks.- MA-Mamba: Multi-Agent Reinforcement Learning with State Space Model.- Decentralized Extension for Centralized Multi-Agent Reinforcement Learning via Online Distillation.- Advancing RVFL networks: Robust classification with the HawkEye loss function.- An Enhanced MILP-based Verifier for Adversary Robustness of Neural  Networks.- Hide-and-Seek GANs for Generation with Limited Data.- Unsupervised Robust Hypergraph Correlation Hashing for MultimediaRetrieval.- Emotional Atmosphere Soft Label for Emotion Recognition in Conversations.- CCATS: Moving Forward with Class-Conditional Time Series Generation.- M3ixTS: Mixing of Multi-patch and Multi-view For Time Series  Forecasting.- CSTFormer: Cross Spatial-Temporal Learning Transformer withDynamic Sign Language Recognition through an Augmented Reality Environment.- MmFormer: A Novel Multi-Scale and Multi-Period Transformer Model for Irregular periodic Network Traffc Prediction.- Time Series Anomaly Detection via Temporal Dependencies and Multivariate Correlations Integrating.- Transformer-Based Long Time Series Forecasting with Decoupled Information Extraction and Information Complementarity.

Erscheinungsdatum
Reihe/Serie Lecture Notes in Computer Science
Zusatzinfo 123 Illustrations, color; 13 Illustrations, black and white
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Schlagworte Artificial Intelligence • Collaborative and social computing • document management and text processing • Education • Information Retrieval • Information Systems Applications • Information Theory • machine learning • Operations Research • physical sciences and engineering • semantics and reasoning • Theory and algorithms for application domains • ubiquitous and mobile computing • Visualization
ISBN-10 981-96-6581-7 / 9819665817
ISBN-13 978-981-96-6581-5 / 9789819665815
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
eine Einführung mit Python, Scikit-Learn und TensorFlow

von Oliver Zeigermann; Chi Nhan Nguyen

Buch | Softcover (2024)
O'Reilly (Verlag)
CHF 27,85
Von den Grundlagen bis zum Produktiveinsatz

von Anatoly Zelenin; Alexander Kropp

Buch (2025)
Hanser (Verlag)
CHF 69,95