Enriques Surfaces II (eBook)
481 Seiten
Springer Nature Singapore (Verlag)
978-981-96-1513-1 (ISBN)
This book, consisting of two volumes, gives a contemporary account of the study of the class of projective algebraic surfaces known as Enriques surfaces. These surfaces were discovered more than 125 years by F. Enriques in an attempt to extend the characterization of rational algebraic curves to the case of algebraic surfaces. The novel feature of the present exposition is that no assumption on the characteristic of the ground field is assumed.
This requirement calls for exploring the geometry of such surfaces by purely geometric and arithmetic methods that do not rely on transcendental methods such as the theory of periods of algebraic surfaces of type K3, which are close relatives of Enriques surfaces. Some of the methods use many technical tools from algebraic geometry that are discussed in Volume 1 and will be a useful source of reference for the study of algebraic surfaces over fields of positive characteristic. Volume 1 also contains a detailed exposition of the theory of elliptic surfaces over fields of arbitrary characteristic.
The second volume discusses many new topics - for example, the theory of automorphisms of Enriques surfaces and the relationships with hyperbolic geometry. Together, the two volumes contain many examples and an extensive bibliography made up of more than 700 items.
This book, consisting of two volumes, gives a contemporary account of the study of the class of projective algebraic surfaces known as Enriques surfaces. These surfaces were discovered more than 125 years by F. Enriques in an attempt to extend the characterization of rational algebraic curves to the case of algebraic surfaces. The novel feature of the present exposition is that no assumption on the characteristic of the ground field is assumed. This requirement calls for exploring the geometry of such surfaces by purely geometric and arithmetic methods that do not rely on transcendental methods such as the theory of periods of algebraic surfaces of type K3, which are close relatives of Enriques surfaces. Some of the methods use many technical tools from algebraic geometry that are discussed in Volume 1 and will be a useful source of reference for the study of algebraic surfaces over fields of positive characteristic. Volume 1 also contains a detailed exposition of the theory of elliptic surfaces over fields of arbitrary characteristic. The second volume discusses many new topics for example, the theory of automorphisms of Enriques surfaces and the relationships with hyperbolic geometry. Together, the two volumes contain many examples and an extensive bibliography made up of more than 700 items.
| Erscheint lt. Verlag | 25.3.2025 |
|---|---|
| Zusatzinfo | XXII, 481 p. 110 illus., 25 illus. in color. |
| Sprache | englisch |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
| Mathematik / Informatik ► Mathematik ► Analysis | |
| Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
| Schlagworte | algebraic surfaces • Automorphism groups • elliptic surfaces • Enriques surfaces • K3 surfaces |
| ISBN-10 | 981-96-1513-5 / 9819615135 |
| ISBN-13 | 978-981-96-1513-1 / 9789819615131 |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich