Deep Learning – Grundlagen und Implementierung
Neuronale Netze mit Python und PyTorch programmieren
Seiten
2020
O'Reilly (Verlag)
978-3-96010-454-4 (ISBN)
O'Reilly (Verlag)
978-3-96010-454-4 (ISBN)
- Titel leider nicht mehr lieferbar
- Artikel merken
Grundprinzipien und Konzepte neuronaler Netze systematisch und verständlich erklärt
Deep-Learning-Grundlagen für Data Scientists und Softwareentwickler mit Erfahrung im Machine Learning
Implementierung der Deep-Learning-Konzepte mit dem beliebten Framework PyTorch
Zahlreiche Codebeispiele in Python verdeutlichen die konkrete Umsetzung
Dieses Buch vermittelt Ihnen das konzeptionelle und praktische Rüstzeug, um ein tiefes Verständnis für die Funktionsweise neuronaler Netze zu bekommen. Sie lernen die Grundprinzipien des Deep Learning kennen, zu deren Veranschaulichung Seth Weidman gut nachvollziehbare Konzeptmodelle entwickelt hat, die von Codebeispielen begleitet werden. Das Buch eignet sich für Data Scientists und Softwareentwickler mit Erfahrung im Machine Learning.
Sie beginnen mit den Basics des Deep Learning und gelangen schnell zu den Details fortgeschrittener Architekturen, indem Sie deren Aufbau von Grund auf neu implementieren. Dabei lernen Sie mehrschichtige neuronale Netze wie Convolutional und Recurrent Neural Networks kennen. Diese neuronalen Netzwerkkonzepte setzen Sie dann mit dem beliebten Framework PyTorch praktisch um. Auf diese Weise bauen Sie ein fundiertes Wissen darüber auf, wie neuronale Netze mathematisch, rechnerisch und konzeptionell funktionieren.
Deep-Learning-Grundlagen für Data Scientists und Softwareentwickler mit Erfahrung im Machine Learning
Implementierung der Deep-Learning-Konzepte mit dem beliebten Framework PyTorch
Zahlreiche Codebeispiele in Python verdeutlichen die konkrete Umsetzung
Dieses Buch vermittelt Ihnen das konzeptionelle und praktische Rüstzeug, um ein tiefes Verständnis für die Funktionsweise neuronaler Netze zu bekommen. Sie lernen die Grundprinzipien des Deep Learning kennen, zu deren Veranschaulichung Seth Weidman gut nachvollziehbare Konzeptmodelle entwickelt hat, die von Codebeispielen begleitet werden. Das Buch eignet sich für Data Scientists und Softwareentwickler mit Erfahrung im Machine Learning.
Sie beginnen mit den Basics des Deep Learning und gelangen schnell zu den Details fortgeschrittener Architekturen, indem Sie deren Aufbau von Grund auf neu implementieren. Dabei lernen Sie mehrschichtige neuronale Netze wie Convolutional und Recurrent Neural Networks kennen. Diese neuronalen Netzwerkkonzepte setzen Sie dann mit dem beliebten Framework PyTorch praktisch um. Auf diese Weise bauen Sie ein fundiertes Wissen darüber auf, wie neuronale Netze mathematisch, rechnerisch und konzeptionell funktionieren.
| Erscheinungsdatum | 21.03.2025 |
|---|---|
| Sprache | deutsch |
| Maße | 165 x 240 mm |
| Themenwelt | Informatik ► Datenbanken ► Data Warehouse / Data Mining |
| Mathematik / Informatik ► Informatik ► Programmiersprachen / -werkzeuge | |
| Schlagworte | AI • Algorithmen • Artificial Intelligence • Data Science • KI • Künstliche Intelligenz • machine learning • Maschinelles Lernen • Neural networks • Statistische Datenanalyse • supervised learning • überwachtes Lernen • Unsupervised Learning |
| ISBN-10 | 3-96010-454-5 / 3960104545 |
| ISBN-13 | 978-3-96010-454-4 / 9783960104544 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Ein verständlicher Einstieg mit Python
Buch | Softcover (2024)
O'Reilly (Verlag)
CHF 41,85
eine Einführung mit Python, Scikit-Learn und TensorFlow
Buch | Softcover (2024)
O'Reilly (Verlag)
CHF 27,85