Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Mathematical Methods in Data Science - Sébastien Roch

Mathematical Methods in Data Science

Bridging Theory and Applications with Python

(Autor)

Buch | Softcover
582 Seiten
2025
Cambridge University Press (Verlag)
978-1-009-50940-4 (ISBN)
CHF 95,95 inkl. MwSt
A hands-on textbook for advanced undergraduates and beginning graduate students in data science, offering an accessible introduction to the essential mathematics behind modern data analysis. With practical Python examples and hundreds of exercises and problems, it's an invaluable resource for students and educators alike.
Bridge the gap between theoretical concepts and their practical applications with this rigorous introduction to the mathematics underpinning data science. It covers essential topics in linear algebra, calculus and optimization, and probability and statistics, demonstrating their relevance in the context of data analysis. Key application topics include clustering, regression, classification, dimensionality reduction, network analysis, and neural networks. What sets this text apart is its focus on hands-on learning. Each chapter combines mathematical insights with practical examples, using Python to implement algorithms and solve problems. Self-assessment quizzes, warm-up exercises and theoretical problems foster both mathematical understanding and computational skills. Designed for advanced undergraduate students and beginning graduate students, this textbook serves as both an invitation to data science for mathematics majors and as a deeper excursion into mathematics for data science students.

Sébastien Roch is a Vilas Distinguished Achievement Professor of Mathematics at the University of Wisconsin, Madison. At UW-Madison, he helped establish the Data Science Major and has developed several courses on the mathematics of data. He is the author of Modern Discrete Probability: An Essential Toolkit (2023).

1. Introduction: a first data science problem; 2. Least squares: geometric, algebraic, and numerical aspects; 3. Optimization theory and algorithms; 4. Singular value decomposition; 5. Spectral graph theory; 6. Probabilistic models: from simple to complex; 7. Random walks on graphs and Markov chains; 8. Neural networks, backpropagation and stochastic gradient descent.

Erscheinungsdatum
Reihe/Serie Cambridge Mathematical Textbooks
Zusatzinfo Worked examples or Exercises
Verlagsort Cambridge
Sprache englisch
Maße 178 x 254 mm
Gewicht 1203 g
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Mathematik / Informatik Informatik Theorie / Studium
Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Angewandte Mathematik
ISBN-10 1-009-50940-3 / 1009509403
ISBN-13 978-1-009-50940-4 / 9781009509404
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
eine Einführung mit Python, Scikit-Learn und TensorFlow

von Oliver Zeigermann; Chi Nhan Nguyen

Buch | Softcover (2024)
O'Reilly (Verlag)
CHF 27,85
Von den Grundlagen bis zum Produktiveinsatz

von Anatoly Zelenin; Alexander Kropp

Buch (2025)
Hanser (Verlag)
CHF 69,95