Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Deep Learning in Action: Image and Video  Processing for Practical Use -  Abdussalam Elhanashi,  Sergio Saponara

Deep Learning in Action: Image and Video Processing for Practical Use (eBook)

eBook Download: EPUB
2025 | 1. Auflage
250 Seiten
Elsevier Science (Verlag)
978-0-443-30079-0 (ISBN)
Systemvoraussetzungen
148,16 inkl. MwSt
(CHF 144,75)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Artificial intelligence technology has entered an extraordinary phase of fast development and wide application. The techniques developed in traditional AI research areas, such as computer vision and object recognition, have found many innovative applications in an array of real-world settings. The general methodological contributions from AI, such as a variety of recently developed deep learning algorithms, have also been applied to a wide spectrum of fields such as surveillance applications, real-time processing, IoT devices, and health care systems. The state-of-the-art and deep learning models have wider applicability and are highly efficient. Deep Learning in Action: Image and Video Processing for Practical Use provides a comprehensive and accessible resource for both intermediate to advanced readers seeking to harness the power of deep learning in the domains of video and image processing. The book bridges the gap between theoretical concepts and practical implementation by emphasizing lightweight approaches, enabling readers to efficiently apply deep learning techniques to real-world scenarios. It focuses on resource-efficient methods, making it particularly relevant in contexts where computational constraints are a concern. - Provides step-by-step guidance on implementing deep learning techniques, specifically for video and image processing tasks in real-world scenarios - Emphasizes lightweight and efficient approaches to deep learning, ensuring that readers learn techniques that are suited to resource-constrained environments - Covers a wide range of real-world applications, such as object detection, image segmentation, video classification - Offers a comprehensive understanding of how deep learning can be leveraged across various domains - Encourages hands-on experience that can be applied to the concepts to existing projects

Dr. Abdussalam Elhanashi is a researcher at the Università di Pisa, Italy, specializing in advanced applications of deep learning and video imaging processing. He holds an M.Sc. in Electronics and Electrical Engineering from the University of Glasgow in Scotland and an MBA from the University of Nicosia in Cyprus. He earned his Ph.D. in Information Engineering from the Università di Pisa, funded by a prestigious merit-based scholarship from the Islamic Bank Development (IsDB) as Libya's top candidate in 2019-2020. Dr. Elhanashi was a Research Fellow at the University of Strathclyde in 2021, where he applied deep learning models to analyse CT scans and X-ray images for medical diagnostics. In 2022, he was a visiting researcher at Hiroshima University in Japan, focusing on advanced video analysis techniques. With over 16 years of industry experience, he has successfully managed engineering projects, conducted system maintenance, and performed root cause analyses to address technical challenges. He authored the first Arabic-language book on artificial intelligence in Libya and has contributed to numerous peer-reviewed articles in international conferences and journals. He is a developer at the Society for Imaging Informatics in Medicine (SIIM) in USA. His work focuses on real-world AI applications, lightweight model development, video surveillance, IoT-based low-cost embedded systems, designing AI-driven solutions for medical imaging, and efficient coding techniques for imaging and video processing systems.
Artificial intelligence technology has entered an extraordinary phase of fast development and wide application. The techniques developed in traditional AI research areas, such as computer vision and object recognition, have found many innovative applications in an array of real-world settings. The general methodological contributions from AI, such as a variety of recently developed deep learning algorithms, have also been applied to a wide spectrum of fields such as surveillance applications, real-time processing, IoT devices, and health care systems. The state-of-the-art and deep learning models have wider applicability and are highly efficient. Deep Learning in Action: Image and Video Processing for Practical Use provides a comprehensive and accessible resource for both intermediate to advanced readers seeking to harness the power of deep learning in the domains of video and image processing. The book bridges the gap between theoretical concepts and practical implementation by emphasizing lightweight approaches, enabling readers to efficiently apply deep learning techniques to real-world scenarios. It focuses on resource-efficient methods, making it particularly relevant in contexts where computational constraints are a concern. - Provides step-by-step guidance on implementing deep learning techniques, specifically for video and image processing tasks in real-world scenarios- Emphasizes lightweight and efficient approaches to deep learning, ensuring that readers learn techniques that are suited to resource-constrained environments- Covers a wide range of real-world applications, such as object detection, image segmentation, video classification- Offers a comprehensive understanding of how deep learning can be leveraged across various domains- Encourages hands-on experience that can be applied to the concepts to existing projects
Erscheint lt. Verlag 12.3.2025
Sprache englisch
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
ISBN-10 0-443-30079-8 / 0443300798
ISBN-13 978-0-443-30079-0 / 9780443300790
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Die Grundlage der Digitalisierung

von Knut Hildebrand; Michael Mielke; Marcus Gebauer

eBook Download (2025)
Springer Fachmedien Wiesbaden (Verlag)
CHF 29,30
Die materielle Wahrheit hinter den neuen Datenimperien

von Kate Crawford

eBook Download (2024)
C.H.Beck (Verlag)
CHF 17,55