Machine Learning Models for Predicting Drug-Target Interactions (eBook)
46 Seiten
GRIN Verlag
978-3-389-11595-4 (ISBN)
Leveraging datasets encompassing diverse information on chemical structures, protein sequences, and biological pathways associated with drug-target interactions, we embark on feature engineering endeavors to extract pertinent features from these heterogeneous data sources. Our investigation delves into various machine learning paradigms, including RF (Random Forests), SVP (Support Vector Machines), and NN (Neural Networks), aiming to exploit their capabilities in learning intricate patterns from multidimensional data.
Through systematic experimentation and rigorous evaluation, we demonstrate the efficacy of our approach in accurately predicting drug-target interactions, thus offering a promising avenue to expedite drug discovery and repurposing efforts. Additionally, we discuss the interpretability of machine learning models and their role in elucidating the underlying mechanisms of drug-target interactions. Our research contributes to the advancement of computational methodologies in pharmaceutical research, fostering innovation and progress in predictive modeling for drug discovery.
By harnessing the power of machine learning, we aspire to empower researchers with tools that streamline the drug development process, ultimately leading to improved patient outcomes and advancements in healthcare.
| Erscheint lt. Verlag | 7.3.2025 |
|---|---|
| Verlagsort | München |
| Sprache | englisch |
| Themenwelt | Mathematik / Informatik ► Informatik ► Netzwerke |
| Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
| Schlagworte | Dataset • drug discovery • drug-target interactions • machine learning • Models |
| ISBN-10 | 3-389-11595-1 / 3389115951 |
| ISBN-13 | 978-3-389-11595-4 / 9783389115954 |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Digital Rights Management: ohne DRM
Dieses eBook enthält kein DRM oder Kopierschutz. Eine Weitergabe an Dritte ist jedoch rechtlich nicht zulässig, weil Sie beim Kauf nur die Rechte an der persönlichen Nutzung erwerben.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich