Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
A Gentle Introduction to Data, Learning, and Model Order Reduction - Francisco Chinesta, Elías Cueto, Victor Champaney, Chady Ghnatios, Amine Ammar, Nicolas Hascoët, David González, Icíar Alfaro, Daniele Di Lorenzo, Angelo Pasquale, Dominique Baillargeat

A Gentle Introduction to Data, Learning, and Model Order Reduction

Techniques and Twinning Methodologies
Buch | Hardcover
XVI, 227 Seiten
2025
Springer International Publishing (Verlag)
978-3-031-87571-7 (ISBN)
CHF 74,85 inkl. MwSt

This open access book explores the latest advancements in simulation performance, driven by model order reduction, informed and augmented machine learning technologies and their combination into the so-called hybrid digital twins. It provides a comprehensive review of three key frameworks shaping modern engineering simulations: physics-based models, data-driven approaches, and hybrid techniques that integrate both. The book examines the limitations of traditional models, the role of data acquisition in uncovering underlying patterns, and how physics-informed and augmented learning techniques contribute to the development of digital twins. Organized into four sections Around Data, Around Learning, Around Reduction, and Around Data Assimilation & Twinning this book offers an essential resource for researchers, engineers, and students seeking to understand and apply cutting-edge simulation methodologies

Francisco Chinesta  Professor of Computational Physics at Arts et Métiers Institute of Technology, Paris and programme director at CNRS@CREATE, Singapore. His research focuses on computational physics, model order reduction, and hybrid artificial intelligence.

Elias Cueto  Professor of Continuum Mechanics at Universidad de Zaragoza. His research covers model order reduction, artificial intelligence and computational mechanics.

Victor Champaney   Researcher at Arts et Métiers Institute of Technology, Paris. His work specializes in model order reduction, hybrid modeling and frugal AI techniques.

Chady Ghnatios  Professor of Mechanical Engineering at University of North Florida, USA. His research focuses on model order reduction, advanced simulation, machine learning and hybrid modeling.

Amine Ammar  Professor of Computational Mechanics at Arts et Métiers Institute of Technology, Angers. His expertise lies in kinetic theory models, model reduction, and computational material forming.

Nicolas Hascoët  Associate Professor at Arts et Métiers Institute of Technology, Paris. His research focuses on machine learning and data science for industrial applications.

David Gonzalez   Professor of Continuum Mechanics at Universidad de Zaragoza. His research interests include model reduction, real-time computational simulations, and physics-informed AI.

Icíar Alfaro  Associate Professor at Universidad de Zaragoza. She specializes in numerical methods, solid mechanics, and physics-informed neural networks.

Daniele Di Lorenzo  Researcher at Arts et Métiers Institute of Technology, Paris. His research focuses on inverse analysis, hybrid modeling, and digital twins for structural health monitoring.

Angelo Pasquale  Researcher in Computational Mechanics at Arts et Métiers Institute of Technology, Paris. He specializes in AI-enhanced simulations, model order reduction and multiscale modeling.

Dominique Baillargeat  Professor at the University of Limoges and Director of CNRS@CREATE at Singapore. His research focuses on high-frequency electronics, nanotechnologies, and advanced modeling and simulation techniques using Hybrid-AI.

Abstract.- Extended summary.- Part 1.Around Data.- Part 2.Around Learning.- Part 3. Around Reduction.- Part 4. Around Data Assimilation & Twinning.

Erscheinungsdatum
Reihe/Serie Studies in Big Data
Zusatzinfo XVI, 227 p. 33 illus., 29 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik Analysis
Technik
Schlagworte Data reduction • Digital Twins • Hybrid modelling • machine learning • Model order reduction • open access
ISBN-10 3-031-87571-0 / 3031875710
ISBN-13 978-3-031-87571-7 / 9783031875717
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Künstliche Intelligenz, Macht und das größte Dilemma des 21. …

von Mustafa Suleyman; Michael Bhaskar

Buch | Softcover (2025)
C.H.Beck (Verlag)
CHF 25,20