Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Probability and Statistics for Data Science - Carlos Fernandez-Granda

Probability and Statistics for Data Science

Buch | Hardcover
624 Seiten
2025
Cambridge University Press (Verlag)
978-1-009-18008-5 (ISBN)
CHF 226,95 inkl. MwSt
  • Versand in 3-4 Wochen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
This accessible book for graduate students and data scientists provides a solid background in probabilistic and statistical concepts relevant to data science. Emphasis is placed on practice, with examples throughout using real-world data that readers can implement from Python code available on the book's website.
This self-contained guide introduces two pillars of data science, probability theory, and statistics, side by side, in order to illuminate the connections between statistical techniques and the probabilistic concepts they are based on. The topics covered in the book include random variables, nonparametric and parametric models, correlation, estimation of population parameters, hypothesis testing, principal component analysis, and both linear and nonlinear methods for regression and classification. Examples throughout the book draw from real-world datasets to demonstrate concepts in practice and confront readers with fundamental challenges in data science, such as overfitting, the curse of dimensionality, and causal inference. Code in Python reproducing these examples is available on the book's website, along with videos, slides, and solutions to exercises. This accessible book is ideal for undergraduate and graduate students, data science practitioners, and others interested in the theoretical concepts underlying data science methods.

Carlos Fernandez-Granda is Associate Professor of Mathematics and Data Science at New York University, where he has taught probability and statistics to data science students since 2015. The goal of his research is to design and analyze data science methodology, with a focus on machine learning, artificial intelligence, and their application to medicine, climate science, biology, and other scientific domains.

Preface; Book Website; Introduction and Overview; 1. Probability; 2. Discrete variables; 3. Continuous variables; 4. Multiple discrete variables; 5. Multiple continuous variables; 6. Discrete and continuous variables; 7. Averaging; 8. Correlation; 9. Estimation of population parameters; 10. Hypothesis testing; 11. Principal component analysis and low-rank models; 12. Regression and classification; A. Datasets; References; Index.

Erscheinungsdatum
Zusatzinfo Worked examples or Exercises
Verlagsort Cambridge
Sprache englisch
Maße 178 x 254 mm
Gewicht 1426 g
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
ISBN-10 1-009-18008-8 / 1009180088
ISBN-13 978-1-009-18008-5 / 9781009180085
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
eine Einführung mit Python, Scikit-Learn und TensorFlow

von Oliver Zeigermann; Chi Nhan Nguyen

Buch | Softcover (2024)
O'Reilly (Verlag)
CHF 27,85
Von den Grundlagen bis zum Produktiveinsatz

von Anatoly Zelenin; Alexander Kropp

Buch (2025)
Hanser (Verlag)
CHF 69,95