Convexity in Newton's Method
Springer International Publishing (Verlag)
978-3-031-85753-9 (ISBN)
This monograph examines a variety of iterative methods in Banach spaces with a focus on those obtained from the Newton method. Together with the authors previous two volumes on the topic of the Newton method in Banach spaces, this third volume significantly extends Kantorovich's initial theory. It accomplishes this by emphasizing the influence of the convexity of the function involved, showing how improved iterative methods can be obtained that build upon those introduced in the previous two volumes. Each chapter presents theoretical results and illustrates them with applications to nonlinear equations, including scalar equations, integral equations, boundary value problems, and more. Convexity in Newton's Method will appeal to researchers interested in the theory of the Newton method as well as other iterative methods in Banach spaces.
The degree of logarithmic convexity.- The Newton method and convexity.- Accelerations of the Newton method.- Newton-like methods with high order of convergence.- Optimization of the Chebyshev method.
| Erscheinungsdatum | 15.05.2025 |
|---|---|
| Reihe/Serie | Frontiers in Mathematics |
| Zusatzinfo | XII, 242 p. 48 illus., 35 illus. in color. |
| Verlagsort | Cham |
| Sprache | englisch |
| Maße | 168 x 240 mm |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
| Schlagworte | Accelerations of Newton's method • Accelerations of Newton’s method • Banach spaces • boundary value problems • Chebyshev method • convergence analysis • Convex Functions • High-order convergence • Integral equations • Kantorovich's Theory • Kantorovich’s Theory • Logarithmic convexity • Newton Method • Newton-Raphson method • Scalar Equations |
| ISBN-10 | 3-031-85753-4 / 3031857534 |
| ISBN-13 | 978-3-031-85753-9 / 9783031857539 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
aus dem Bereich