Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Reciprocal Recommender Systems - James Neve

Reciprocal Recommender Systems

(Autor)

Buch | Softcover
XI, 107 Seiten
2025
Springer International Publishing (Verlag)
978-3-031-85102-5 (ISBN)
CHF 74,85 inkl. MwSt

This book provides an introduction to reciprocal recommendation. It starts with theory, and then moves on to concrete examples of the most successful algorithms in the field. Researchers and developers with a little background in machine learning will find many of the algorithms are straightforward to implement, and code samples are included to help with this.

In addition to accessible algorithms, the book also examines some more cutting-edge research such as the recent interest in applying matching theory to reciprocal recommendation. These parts will be of interest both to developers who are looking to optimize their systems, and to researchers who might find avenues to further advance the field and develop new methods of recommending people to people.

By the end of this book, the reader will have a comprehensive understanding of the state of the art in reciprocal recommendation and will be equipped to design and implement their own systems.

James Neve is a machine learning researcher with Eureka Inc. in Tokyo, designing AI systems including Reciprocal Recommender Systems (RRSs) for online dating services. He has a PhD in Machine Learning from the University of Bristol, specialized in RRSs, and he has published multiple papers on reciprocal recommendation in competitive conferences such as ACM RecSys.

Preface.- 1. Introduction.- 2. Theoretical Background.- 3. Collaborative Filtering.- 4. Content-Based Filtering.- 5. Hybrid Filtering and Additional Approaches.- 6. Matching Theory.- 7. Ethical Concerns and Future Work.

Erscheinungsdatum
Reihe/Serie SpringerBriefs in Computer Science
Zusatzinfo XI, 107 p.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Schlagworte bidirectional preference relationships • Collaborative Filtering • content-based filtering • machine learning • Recommender Systems
ISBN-10 3-031-85102-1 / 3031851021
ISBN-13 978-3-031-85102-5 / 9783031851025
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
eine Einführung mit Python, Scikit-Learn und TensorFlow

von Oliver Zeigermann; Chi Nhan Nguyen

Buch | Softcover (2024)
O'Reilly (Verlag)
CHF 27,85
Von den Grundlagen bis zum Produktiveinsatz

von Anatoly Zelenin; Alexander Kropp

Buch (2025)
Hanser (Verlag)
CHF 69,95