Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Reinforcement Learning for Cyber Operations (eBook)

Applications of Artificial Intelligence for Penetration Testing
eBook Download: EPUB
2024
429 Seiten
Wiley-IEEE Press (Verlag)
978-1-394-20647-6 (ISBN)

Lese- und Medienproben

Reinforcement Learning for Cyber Operations - Abdul Rahman, Christopher Redino, Dhruv Nandakumar, Tyler Cody, Sachin Shetty, Dan Radke
Systemvoraussetzungen
110,99 inkl. MwSt
(CHF 108,40)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

A comprehensive and up-to-date application of reinforcement learning concepts to offensive and defensive cybersecurity

In Reinforcement Learning for Cyber Operations: Applications of Artificial Intelligence for Penetration Testing, a team of distinguished researchers delivers an incisive and practical discussion of reinforcement learning (RL) in cybersecurity that combines intelligence preparation for battle (IPB) concepts with multi-agent techniques. The authors explain how to conduct path analyses within networks, how to use sensor placement to increase the visibility of adversarial tactics and increase cyber defender efficacy, and how to improve your organization's cyber posture with RL and illuminate the most probable adversarial attack paths in your networks.

Containing entirely original research, this book outlines findings and real-world scenarios that have been modeled and tested against custom generated networks, simulated networks, and data. You'll also find:

  • A thorough introduction to modeling actions within post-exploitation cybersecurity events, including Markov Decision Processes employing warm-up phases and penalty scaling
  • Comprehensive explorations of penetration testing automation, including how RL is trained and tested over a standard attack graph construct
  • Practical discussions of both red and blue team objectives in their efforts to exploit and defend networks, respectively
  • Complete treatment of how reinforcement learning can be applied to real-world cybersecurity operational scenarios

Perfect for practitioners working in cybersecurity, including cyber defenders and planners, network administrators, and information security professionals, Reinforcement Learning for Cyber Operations: Applications of Artificial Intelligence for Penetration Testing will also benefit computer science researchers.

Dr. Abdul Rahman holds PhDs in physics, math, information technology-cybersecurity and has expertise in cybersecurity, big data, blockchain, and analytics (AI, ML).

Dr. Christopher Redino holds a PhD in theoretical physics and has extensive data science experience in every part of the AI / ML lifecycle.

Mr. Dhruv Nandakumar has extensive data science expertise in deep learning.

Dr. Tyler Cody is an Assistant Research Professor at the Virginia Tech National Security Institute.

Dr. Sachin Shetty is a Professor in the Electrical and Computer Engineering Department at Old Dominion University and the Executive Director of the Center for Secure and Intelligent Critical Systems at the Virginia Modeling, Analysis and Simulation Center.

Mr. Dan Radke is an Information Security professional with extensive experience in both offensive and defensive cybersecurity.


A comprehensive and up-to-date application of reinforcement learning concepts to offensive and defensive cybersecurity In Reinforcement Learning for Cyber Operations: Applications of Artificial Intelligence for Penetration Testing, a team of distinguished researchers delivers an incisive and practical discussion of reinforcement learning (RL) in cybersecurity that combines intelligence preparation for battle (IPB) concepts with multi-agent techniques. The authors explain how to conduct path analyses within networks, how to use sensor placement to increase the visibility of adversarial tactics and increase cyber defender efficacy, and how to improve your organization s cyber posture with RL and illuminate the most probable adversarial attack paths in your networks. Containing entirely original research, this book outlines findings and real-world scenarios that have been modeled and tested against custom generated networks, simulated networks, and data. You ll also find: A thorough introduction to modeling actions within post-exploitation cybersecurity events, including Markov Decision Processes employing warm-up phases and penalty scaling Comprehensive explorations of penetration testing automation, including how RL is trained and tested over a standard attack graph construct Practical discussions of both red and blue team objectives in their efforts to exploit and defend networks, respectively Complete treatment of how reinforcement learning can be applied to real-world cybersecurity operational scenarios Perfect for practitioners working in cybersecurity, including cyber defenders and planners, network administrators, and information security professionals, Reinforcement Learning for Cyber Operations: Applications of Artificial Intelligence for Penetration Testing will also benefit computer science researchers.
Erscheint lt. Verlag 27.12.2024
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Theorie / Studium
Schlagworte AI pentesting • Cybersecurity and ML • Cybersecurity automation • Cybersecurity Best Practices • cybersecurity events • Cybersecurity operations • cybersecurity research • Machine learning cybersecurity • penetration testing automation • service scanning
ISBN-10 1-394-20647-X / 139420647X
ISBN-13 978-1-394-20647-6 / 9781394206476
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Design scalable and high-performance Java applications with Spring

von Wanderson Xesquevixos

eBook Download (2025)
Packt Publishing (Verlag)
CHF 31,65
The expert's guide to building secure, scalable, and reliable …

von Alexander Shuiskov

eBook Download (2025)
Packt Publishing (Verlag)
CHF 31,65