Artificial Intelligence and Robotics
Springer Nature Switzerland AG (Verlag)
978-981-96-2913-8 (ISBN)
- Titel nicht im Sortiment
- Artikel merken
The 61 full papers presented were carefully reviewed and selected from a total of 164 submissions. The ISAIR 2024 focuses on three important areas of pattern recognition: artificial intelligence, robotics and Internet of Things, covering various technical aspects.
.- A lane detection method based on fusion of large kernel attentionmechanism.
.- A Study on Enhancing Graph-Based Knowledge Tracing through Question Interaction.
.- Radiology report generation based on multi-scale feature fusion and enhancement.
.- Spatio-Temporal Focus with Active Learning in Sparse Black-Box Adversarial Attacks for Video Recognition.
.- An Improved Point Cloud Registration Algorithm Based on Feature Point Extraction.
.- YOLOv8-FGE: A lightweight mouse behavior detection algorithm.
.- A Dual Encoder U-Net for Multi-Scale 3D Medical Image Segmentation.
.- A Gas Concentration Prediction Model Based on SBLPformer.
.- A MOTRv2-based UAV multi-target tracking model EL-MOTR.
.- Prediction of Typhoon Cloud Maps Based on Self Attention Memory Spatiotemporal Model.
.- Information-theoretic Deep Quantification for Unsupervised Cross-modal Hashing.
.- Research on SwinT-SOLOv2 Modeling for Instance Segmentation.
.- An Overview of Abnormal Data Recovery in Power Systems.
.- An Overview of Full-cycle Data Security For Drone Inspection.
.- A Restoration Method Based on Color Compensation and Depth Prior Using a Revised Underwater Imaging Model.
.- Real-time Student Behavior Analysis via YOLOv5 with Coordinate Attention.
.- GD-RRT*: An Improved RRT* Path Planning Algorithm Combining Gaussian Distributed Sampling and Depth Strategy for fruit-picking robot.
.- UAV Swarm Air Combat Strategies Research based on Multi-Agent Reinforcement Learning and Rule Coupling.
.- Photovoltaic Power Prediction Based on Machine Learning Fusion Algorithm.
.- Multi-modal Spatio-Temporal Transformer for Defect Recognition of Substation Equipment.
.- A Comprehensive Cross-Phase Feature Fusion Method for Multi-phase Liver Tumor Segmentation in Enhanced CT Images.
.- OneStar: Efficient Template-Separable Hierarchical Transformer Tracking for Edge Computing.
.- A multi-view graph neural network approach for magnetic resonance imaging-based diagnosis of knee injuries.
.- Mitigating Multimodal Large Language Model Hallucinations through Direct Preference Optimization.
.- Briefness-Oriented prompting elicits faithfulness in LVLM.
.- A Novel Group Block Attention Module for Lung CT Image Segmentation.
.- Layered Clothing Detection Based on Improved YOLOV9.
.- Strategic Medical Text Classification with Improved Blending Ensemble Learning.
.- HDCP: Hierarchical Dual Cross-modality Prompts Guided RGB-D Fusion for 6D Object Pose Estimation.
.- Dense Images Of Honey Bees.
.- Application of an Improved Residual Attention Neural Network in Mechanical Part Classification.
.- Genetic Algorithm-Optimized Random Forest for Grid Fault Prediction.
| Erscheinungsdatum | 14.05.2025 |
|---|---|
| Reihe/Serie | Communications in Computer and Information Science |
| Zusatzinfo | 134 Illustrations, color; 32 Illustrations, black and white |
| Verlagsort | Cham |
| Sprache | englisch |
| Maße | 155 x 235 mm |
| Themenwelt | Informatik ► Grafik / Design ► Digitale Bildverarbeitung |
| Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
| Informatik ► Weitere Themen ► Hardware | |
| Schlagworte | Artificial Intelligence • Behavioral Analysis of Robots • brain-machine interface • cognitive computing • computer vision • Distributed robotics • edge computing • Human-robot cooperation • Image Processing • Intelligent Agents • internet of things • machine learning • Mobile Manipulation • Multi-Robot Localization and Mapping • Neural networks • Object recognition • pattern recognition • Robotic Sensor Networks • Soft Computing • Underwater Robots and Applications |
| ISBN-10 | 981-96-2913-6 / 9819629136 |
| ISBN-13 | 978-981-96-2913-8 / 9789819629138 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
aus dem Bereich