Artificial Intelligence and Robotics
Springer Nature Switzerland AG (Verlag)
978-981-96-2910-7 (ISBN)
- Titel nicht im Sortiment
- Artikel merken
The 61 full papers presented were carefully reviewed and selected from a total of 164 submissions. The ISAIR 2024 focuses on three important areas of pattern recognition: artificial intelligence, robotics and Internet of Things, covering various technical aspects.
.- Segmentation of Crack Disaster Images Based on Deep Learning Neural Network Method.
.- Numerical Calculation and Identification of 3D Time-Invariant Freak Waves based on JONSWAP Spectrum and Donelan Direction Function.
.- Enhanced Computing for Marine Disaster Based on the Prior Dark Channel Scenes, Precise Depth Estimation and Channel-Dependent Compensation Method.
.- Semi-supervised learning-based Passive Visible Light Positioning using Solar Irradiation.
.- Multi-teacher Knowledge Distillation via Student’s Reflection.
.- Construction and Application of Protein-Protein Interaction Knowledge Graph.
.- A learning-based monitoring system for factory assembly behavior.
.- A Two-stage Generative Adversarial Approach for Domain Adaptive Semantic Segmentation.
.- LCRNet: Unsupervised Non-Rigid Point Cloud Registration Network Based on Local Correspondence Relationships.
.- Point Cloud Completion via Trigonometric Encoding and Self-attention based Feature Fusion.
.- Research progress of exploring intelligent rehabilitation technology based on human-computer interaction.
.- Spectral Graph Neural Network: A Bibliometrics Study and Visualization Analysis via CiteSpace.
.- H2L: High-Performance Multi-Agent Path Finding in High-Obstacle-Density and Large-Size Maps.
.- Stereo Image Super-resolution Reconstruction Based on Disparity Estimation and Domain Diffusion.
.- Virtual Reality-based Medical Rehabilitation Assistance System.
.- IPSTT: Intention-based Transformer for Multivariate Time Series Forecasting.
.- A Segmentation-based Approach for Lung Disease Classification Using Chest X-ray Images.
.- Dual-Stream Based Scene Text Manipulation Detection Method.
.- ECD: Event-Centric Disentangler for Weakly Supervised Video Anomaly Detection.
.- Sequential Consistency Matters: Boosting Video Sequence Verification with Teacher Multimodal Transformer.
.- A Violent Language Detection Model Based on Short Text.
.- Underground Temperature Prediction Based on LSTM Neural Network and Embedded System Reasoning.
.- PointPET: A Novel Network for 6D Pose Estimation of Industrial Components using Smart Data Driven Modeling.
.- PD-SLAM:A visual SLAM for Dynamic Environments.
.- The Requirements and Constraints of Self-built Data Set on Detection Transformer in Complex Scenario.
.- Self-supervised Contrastive Learning With Similarity-based Sample Judgment.
.- A combined model based on the signal decomposition method, optimization method, and machine learning for wind speed predicting.
.- Improved YOLOv8 Modeling for Earth Observation.
.- Semantic Guided Multi-feature Awared Network for Self-supervised Learning.
| Erscheinungsdatum | 14.05.2025 |
|---|---|
| Reihe/Serie | Communications in Computer and Information Science |
| Zusatzinfo | 120 Illustrations, color; 10 Illustrations, black and white |
| Verlagsort | Cham |
| Sprache | englisch |
| Maße | 155 x 235 mm |
| Themenwelt | Informatik ► Grafik / Design ► Digitale Bildverarbeitung |
| Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
| Informatik ► Weitere Themen ► Hardware | |
| Schlagworte | Artificial Intelligence • Behavioral Analysis of Robots • brain-machine interface • cognitive computing • computer vision • Distributed robotics • edge computing • Human-robot cooperation • Image Processing • Intelligent Agents • internet of things • machine learning • Mobile Manipulation • Multi-Robot Localization and Mapping • Neural networks • Object recognition • pattern recognition • Robotic Sensor Networks • Soft Computing • Underwater Robots and Applications |
| ISBN-10 | 981-96-2910-1 / 9819629101 |
| ISBN-13 | 978-981-96-2910-7 / 9789819629107 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
aus dem Bereich