Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Deep Learning Generalization - Liu Peng

Deep Learning Generalization

Theoretical Foundations and Practical Strategies

(Autor)

Buch | Softcover
220 Seiten
2025
Chapman & Hall/CRC (Verlag)
978-1-032-84189-2 (ISBN)
CHF 85,50 inkl. MwSt
This book provides a comprehensive exploration of generalization in deep learning, focusing on both theoretical foundations and practical strategies. It delves deeply into how machine learning models, particularly deep neural networks, achieve robust performance on unseen data. Key topics include balancing model complexity, addressing overfitting and underfitting, and understanding modern phenomena such as the double descent curve and implicit regularization.

The book offers a holistic perspective by addressing the four critical components of model training: data, model architecture, objective functions, and optimization processes. It combines mathematical rigor with hands-on guidance, introducing practical implementation techniques using PyTorch to bridge the gap between theory and real-world applications. For instance, the book highlights how regularized deep learning models not only achieve better predictive performance but also assume a more compact and efficient parameter space. Structured to accommodate a progressive learning curve, the content spans foundational concepts like statistical learning theory to advanced topics like Neural Tangent Kernels and overparameterization paradoxes.

By synthesizing classical and modern views of generalization, the book equips readers to develop a nuanced understanding of key concepts while mastering practical applications.

For academics, the book serves as a definitive resource to solidify theoretical knowledge and explore cutting-edge research directions. For industry professionals, it provides actionable insights to enhance model performance systematically. Whether you're a beginner seeking foundational understanding or a practitioner exploring advanced methodologies, this book offers an indispensable guide to achieving robust generalization in deep learning.

Liu Peng is currently an Assistant Professor of Quantitative Finance at the Singapore Management University (SMU). His research interests include generalization in deep learning, sparse estimation, Bayesian optimization.

1. Unveiling Generalization in Deep Learning 2. Introduction to Statistical Learning Theory 3. Classical Perspectives on Generalization 4. Modern Perspectives on Generalization 5. Fundamentals of Deep Neural Networks 6. A Concluding Perspective

Erscheinungsdatum
Zusatzinfo 62 Line drawings, black and white; 62 Illustrations, black and white
Sprache englisch
Maße 156 x 234 mm
Gewicht 426 g
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik Computerprogramme / Computeralgebra
ISBN-10 1-032-84189-3 / 1032841893
ISBN-13 978-1-032-84189-2 / 9781032841892
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Eine kurze Geschichte der Informationsnetzwerke von der Steinzeit bis …

von Yuval Noah Harari

Buch | Hardcover (2024)
Penguin (Verlag)
CHF 39,95
die materielle Wahrheit hinter den neuen Datenimperien

von Kate Crawford

Buch | Hardcover (2024)
C.H.Beck (Verlag)
CHF 44,75