Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Gravitational Wave Science with Machine Learning -

Gravitational Wave Science with Machine Learning

Elena Cuoco (Herausgeber)

Buch | Hardcover
289 Seiten
2025
Springer Nature Switzerland AG (Verlag)
978-981-96-1736-4 (ISBN)
CHF 194,70 inkl. MwSt
  • Titel nicht im Sortiment
  • Artikel merken

This book highlights the state of the art of machine learning applied to the science of gravitational waves. The main topics of the book range from the search for astrophysical gravitational wave signals to noise suppression techniques and control systems using machine learning-based algorithms. During the four years of work in the Costa Action CA17137-A network for Gravitational Waves, Geophysics and Machine Learning (G2net), the collaboration produced several original publications as well as tutorials and lectures in the training schools we organized. The book encapsulates the immense amount of finding and achievements.

It is a timely reference for young researchers approaching the analysis of data from gravitational wave experiments, with alternative approaches based on the use of artificial intelligence techniques.

Dr. Elena Cuoco is Full Professor at the University of Bologna since 2024, she conducts research in the field of gravitational waves. She is a member of the LIGO/Virgo/KAGRA collaboration, where she works on data analysis and the application of artificial intelligence techniques for detector characterization and the search for gravitational signals of astrophysical origin. From 2018 to 2023, she served as the Action Chair for COST Action CA17137, dedicated to the application of machine learning to gravitational wave science. Author of numerous scientific publications, she is involved in various initiatives at the European and international levels.

1. Neural network time-series classifiers for gravitational-wave searches in single-detector periods.- 2. A simple self similarity-based unsupervised noise monitor for gravitational-wave detectors.- 3 Simulation of transient noise bursts in gravitational wave interferometers.- 4. Efficient ML Algorithms for Detecting Glitches and Data Patterns in LIGO Time Series.- 5. Denoising gravitational-wave signals from binary black holes with dilated convolutional autoencoder.

Erscheinungsdatum
Reihe/Serie Springer Series in Astrophysics and Cosmology
Zusatzinfo 104 Illustrations, color; 4 Illustrations, black and white; XXV, 289 p. 108 illus., 104 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Naturwissenschaften Physik / Astronomie Astronomie / Astrophysik
Naturwissenschaften Physik / Astronomie Relativitätstheorie
Schlagworte control system • Detector Characterization • Early Warning • gravitational waves • machine learning • Signal Processing
ISBN-10 981-96-1736-7 / 9819617367
ISBN-13 978-981-96-1736-4 / 9789819617364
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
die materielle Wahrheit hinter den neuen Datenimperien

von Kate Crawford

Buch | Hardcover (2024)
C.H.Beck (Verlag)
CHF 44,75
Künstliche Intelligenz, Macht und das größte Dilemma des 21. …

von Mustafa Suleyman; Michael Bhaskar

Buch | Softcover (2025)
C.H.Beck (Verlag)
CHF 25,20