Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Social Learning - Vincenzo Matta, Virginia Bordignon, Ali H. Sayed

Social Learning

Opinion Formation and Decision-Making over Graphs
Buch | Hardcover
484 Seiten
2025
now publishers Inc (Verlag)
978-1-63828-472-7 (ISBN)
CHF 174,55 inkl. MwSt
  • Lieferzeit auf Anfrage
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
This book explores how agents in complex systems—like social networks, robotic swarms, or biological networks—interact and learn through information diffusion and decision-making over graphs. It examines dynamic behaviors shaped by cooperation, environment, and network structure.
Complex cognitive systems, such as social networks, robotic swarms, or biological networks, are composed of individual entities (the agents) whose actions typically arise from some sophisticated form of “social” interaction with other agents. For example, consider the way humans form their individual opinions about a certain phenomenon. The opinions take shape via repeated interactions with other individuals, whether through physical contact or virtually. A diffusion mechanism emerges through which opinions, information, or even fake news propagate.


Social learning also arises over man-made systems in the form of decision-making strategies by multiple agents interacting over a network. Consider a robotic swarm deployed over a hazardous area, where some robots operating under disadvantageous conditions (e.g., with limited visibility or partial information) would only be able to perform their task (such as saving a life during a rescue operation) by leveraging significant cooperation from other robots that have better access to critical information. Nature itself provides many other excellent examples of cooperative learning in the form of biological networks.


The main topic of this book relates to mechanisms for information diffusion and decision-making over graphs, and the study of how agents’ decisions evolve dynamically through interactions with neighbors and the environment.

Dedication

Preface

Chapter 1. Introduction

Chapter 2. Bayesian Learning

Chapter 3. From Single-Agent to Social Learning

Chapter 4. Network Models

Chapter 5. Social Learning with Geometric Averaging

Chapter 6. Error Probability Performance

Chapter 7. Social Learning with Arithmetic Averaging

Chapter 8. Adaptive Social Learning

Chapter 9. Learning Accuracy under ASL

Chapter 10. Adaptation under ASL

Chapter 11. Partial Information Sharing

Chapter 12. Social Machine Learning

Chapter 13. Extensions and Conclusions

Appendices

References

About the Authors

Erscheinungsdatum
Sprache englisch
Maße 156 x 234 mm
Gewicht 852 g
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
ISBN-10 1-63828-472-5 / 1638284725
ISBN-13 978-1-63828-472-7 / 9781638284727
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Künstliche Intelligenz, Macht und das größte Dilemma des 21. …

von Mustafa Suleyman; Michael Bhaskar

Buch | Softcover (2025)
C.H.Beck (Verlag)
CHF 25,20