Integrable Systems, Geometry, and Topology
2006
American Mathematical Society (Verlag)
978-0-8218-4048-1 (ISBN)
American Mathematical Society (Verlag)
978-0-8218-4048-1 (ISBN)
- Titel z.Zt. nicht lieferbar
- Versandkostenfrei
- Auch auf Rechnung
- Artikel merken
Based on lectures from a program on integrable systems and differential geometry held at Taiwan's National Center for Theoretical Sciences, this book provides an introduction to integrable systems and their relation to differential geometry. It is suitable for advanced graduate students and research mathematicians.
The articles in this volume are based on lectures from a program on integrable systems and differential geometry held at Taiwan's National Center for Theoretical Sciences. As is well-known, for many soliton equations, the solutions have interpretations as differential geometric objects, and thereby techniques of soliton equations have been successfully applied to the study of geometric problems. The article by Burstall gives a beautiful exposition on isothermic surfaces and their relations to integrable systems, and the two articles by Guest give an introduction to quantum cohomology, carry out explicit computations of the quantum cohomology of flag manifolds and Hirzebruch surfaces, and give a survey of Givental's quantum differential equations.The article by Heintze, Liu, and Olmos is on the theory of isoparametric submanifolds in an arbitrary Riemannian manifold, which is related to the n-wave equation when the ambient manifold is Euclidean. Mukai-Hidano and Ohnita present a survey on the moduli space of Yang-Mills-Higgs equations on Riemann surfaces. The article by Terng and Uhlenbeck explains the gauge equivalence of the matrix non-linear Schrodinger equation, the Schrodinger flow on Grassmanian, and the Heisenberg Feromagnetic model. The book provides an introduction to integrable systems and their relation to differential geometry. It is suitable for advanced graduate students and research mathematicians.
The articles in this volume are based on lectures from a program on integrable systems and differential geometry held at Taiwan's National Center for Theoretical Sciences. As is well-known, for many soliton equations, the solutions have interpretations as differential geometric objects, and thereby techniques of soliton equations have been successfully applied to the study of geometric problems. The article by Burstall gives a beautiful exposition on isothermic surfaces and their relations to integrable systems, and the two articles by Guest give an introduction to quantum cohomology, carry out explicit computations of the quantum cohomology of flag manifolds and Hirzebruch surfaces, and give a survey of Givental's quantum differential equations.The article by Heintze, Liu, and Olmos is on the theory of isoparametric submanifolds in an arbitrary Riemannian manifold, which is related to the n-wave equation when the ambient manifold is Euclidean. Mukai-Hidano and Ohnita present a survey on the moduli space of Yang-Mills-Higgs equations on Riemann surfaces. The article by Terng and Uhlenbeck explains the gauge equivalence of the matrix non-linear Schrodinger equation, the Schrodinger flow on Grassmanian, and the Heisenberg Feromagnetic model. The book provides an introduction to integrable systems and their relation to differential geometry. It is suitable for advanced graduate students and research mathematicians.
Isothermic surfaces: Conformal geometry, Clifford algebras and integrable systems by F. E. Burstall Introduction to homological geometry: part I by M. A. Guest Introduction to homological geometry: part II by M. A. Guest Isoparametric submanifolds and a Chevalley-type restriction theorem by E. Heintze, X. Liu, and C. Olmos Gauge-Theoretic approach to harmonic maps and subspaces in moduli spaces by M. Mukai-Hidano and Y. Ohnita Schrodinger flows on Grassmannians by C.-L. Terng and K. Uhlenbeck.
| Erscheint lt. Verlag | 1.10.2006 |
|---|---|
| Reihe/Serie | AMS/IP Studies in Advanced Mathematics |
| Zusatzinfo | Illustrations |
| Verlagsort | Providence |
| Sprache | englisch |
| Gewicht | 482 g |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Angewandte Mathematik |
| Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
| ISBN-10 | 0-8218-4048-7 / 0821840487 |
| ISBN-13 | 978-0-8218-4048-1 / 9780821840481 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
für Ingenieure und Naturwissenschaftler
Buch | Softcover (2024)
Springer Vieweg (Verlag)
CHF 48,95
Buch | Softcover (2025)
Springer Vieweg (Verlag)
CHF 62,95
Buch | Softcover (2025)
Springer Fachmedien Wiesbaden (Verlag)
CHF 69,95