Practical Deep Learning, 2nd Edition
No Starch Press,US (Verlag)
978-1-7185-0420-2 (ISBN)
Ronald T. Kneusel earned a PhD in machine learning from the University of Colorado, Boulder, and has over 20 years of machine learning experience in industry. Kneusel is also the author of numerous books, including Math for Programming (2025), The Art of Randomness (2024), How AI Works (2023), Strange Code (2022), and Math for Deep Learning (2021), all from No Starch Press.
Foreword
Introduction
Chapter 0: Environment and Mathematical Preliminaries
Part I: Data Is Everything
Chapter 1: It’s All About the Data
Chapter 2: Building the Datasets
Part II: Classical Machine Learning
Chapter 3: Introduction to Machine Learning
Chapter 4: Experiments with Classical Models
Part III: Neural Networks
Chapter 5: Introduction to Neural Networks
Chapter 6: Training a Neural Network
Chapter 7: Experiments with Neural Networks
Chapter 8: Evaluating Models
Part IV: Convolutional Neural Networks
Chapter 9: Introduction to Convolutional Neural Networks
Chapter 10: Experiments with Keras and MNIST
Chapter 11: Experiments with CIFAR-10
Chapter 12: A Case Study: Classifying Audio Samples
Part V: Advanced Networks and Generative AI
Chapter 13: Advanced CNN Architectures
Chapter 14: Fine-Tuning and Transfer Learning
Chapter 15: From Classification to Localization
Chapter 16: Self-Supervised Learning
Chapter 17: Generative Adversarial Networks
Chapter 18: Large Language Models
Afterword
| Erscheinungsdatum | 02.07.2025 |
|---|---|
| Verlagsort | San Francisco |
| Sprache | englisch |
| Maße | 177 x 234 mm |
| Themenwelt | Mathematik / Informatik ► Informatik ► Programmiersprachen / -werkzeuge |
| Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
| ISBN-10 | 1-7185-0420-9 / 1718504209 |
| ISBN-13 | 978-1-7185-0420-2 / 9781718504202 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
aus dem Bereich