Étale Cohomology (eBook)
580 Seiten
Princeton University Press (Verlag)
978-0-691-27377-8 (ISBN)
Lese- und Medienproben
| Erscheint lt. Verlag | 8.4.2025 |
|---|---|
| Reihe/Serie | Princeton Legacy Library | Princeton Mathematical Series |
| Sprache | englisch |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Geometrie / Topologie |
| Mathematik / Informatik ► Mathematik ► Geschichte der Mathematik | |
| Schlagworte | Abelian category • affine variety • Alexander Grothendieck • Algebraically closed field • algebraic closure • algebraic cycle • algebraic equation • Algebraic space • Base change • Brauer group • Category of sets • Chow's lemma • Closed immersion • Codimension • cohomology • Cohomology ring • Cokernel • Commutative diagram • complex number • Dedekind domain • Diagram (category theory) • Direct limit • existential quantification • fibration • Field of fractions • finite field • Finite morphism • functor • fundamental group • galois cohomology • Galois extension • Galois group • G-module • group scheme • Henselian ring • integral domain • Intersection (set theory) • Invertible sheaf • isomorphism class • Lefschetz pencil • Local ring • Morphism • Noetherian • Open set • Presheaf (category theory) • Principal homogeneous space • Profinite group • Projection (mathematics) • projective variety • residue field • Sheaf (mathematics) • sheaf of modules • Spectral Sequence • Stein factorization • Subalgebra • subcategory • SUBGROUP • Subring • Subset • Surjective function • Theorem • Topological space • Topology • Torsion sheaf • Torsor (algebraic geometry) • vector bundle • Weil conjecture • Yoneda Lemma • Zariski's main theorem • Zariski topology |
| ISBN-10 | 0-691-27377-4 / 0691273774 |
| ISBN-13 | 978-0-691-27377-8 / 9780691273778 |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich